714
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Using surrogate species and MaxEnt modeling to prioritize areas for conservation of a páramo bird community in a tropical high Andean biosphere reserve

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2299362 | Received 26 Mar 2023, Accepted 21 Dec 2023, Published online: 22 Jan 2024

References

  • Aguilar, J.M., A. Nieto, N. Espinoza, G. Loja, and B.A. Tinoco. 2019. Assessing patterns of bird roadkills in a high Andean Ecuadorian national park. Studies on Neotropical Fauna and Environment 54, no. 3: 149–18. doi:10.1080/01650521.2019.1649953.
  • Antos, M., and N.L. Schultz. 2020. Climate-mediated changes to grassland structure determine habitat suitability for the critically endangered plains-wanderer (Pedionomus torquatus). Emu - Austral Ornithology 120, no. 1: 2–10. doi:10.1080/01584197.2019.1641415.
  • Astudillo, P.X. 2014. Effects of forest fragmentation on bird communities in a tropical hotspot. Ph.D. diss., Philipps-Universität Marburg. https://archiv.ub.uni-marburg.de/diss/z2014/0470
  • Astudillo, P.X., S. Barros, D.C. Siddons, and E. Zárate. 2018. Influence of habitat modification by livestock on páramo bird abundance in southern Andes of Ecuador. Studies on Neotropical Fauna and Environment 53, no. 1: 29–37. doi:10.1080/01650521.2017.1382122.
  • Astudillo, P.X., I. Grass, D.C. Siddons, D.G. Schabo, and N. Farwig 2020. Centrality in species-habitat networks reveals the importance of habitat quality for high-Andean birds in Polylepis woodlands. Ardeola 67(2):307–24. doi:10.13157/arla.67.2.2020.ra5.
  • Astudillo, P.X., D.G. Schabo, D.C. Siddons, and N. Farwig. 2019. Patch-matrix movements of birds in the páramo landscape of the southern Andes of Ecuador. Emu - Austral Ornithology 119, no. 1: 53–60. doi:10.1080/01584197.2018.1512371.
  • Astudillo, P.X., D.C. Siddons, S. Barros-Quito, J.A. Orellana, and S.C. Latta. 2016. La distribución potencial del Cóndor Andino (Vultur gryphus) revela sitios prioritarios para la conservación en los Andes sur de Ecuador. El Hornero 31, no. 2: 89–95. doi:10.56178/eh.v31i2.555.
  • Astudillo, P.X., B.A. Tinoco, and D.C. Siddons. 2015. The avifauna of Cajas National Park and Mazán Reserve, southern Ecuador, with notes on new records. Cotinga 37: 1–11. https://www.neotropicalbirdclub.org/cotinga/C37_online/Astudillo_et_al.pdf
  • Ballari, D., R. Giraldo, L. Campozano, and E. Samaniego. 2018. Spatial functional data analysis for regionalizing precipitation seasonality and intensity in a sparsely monitored region: Unveiling the spatio-temporal dependencies of precipitation in Ecuador. International Journal of Climatology 38, no. 8: 3337–54. doi:10.1002/joc.5504.
  • Barnett, T.P., J.C. Adam, and D.P. Lettenmaier. 2005. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438, no. 7066: 303–9. doi:10.1038/nature04141.
  • Barros, J.S., P.X. Astudillo, B.O. Landázuri, P. Porras, D.C. Siddons, and S.C. Latta. 2020. Habitat heterogeneity rather than the limits of protected areas influence bird communities in an Andean biosphere reserve. Ecología Austral 30, no. 3: 454–64. doi:10.25260/EA.20.30.3.0.1068.
  • Beck, H.E., E.F. Wood, T.R. McVicar, M. Zambrano-Bigiarini, C. Alvarez-Garreton, O.M. Baez-Villanueva, J. Sheffield, and D.N. Karger. 2020. Bias correction of global high-resolution precipitation climatologies using streamflow observations from 9372 catchments. Journal of Climate 33, no. 4: 1299–315. doi:10.1175/JCLI-D-19-0332.1.
  • Ben‐Hur, E., and R. Kadmon. 2020. Heterogeneity–diversity relationships in sessile organisms: A unified framework. Ecology Letters 23, no. 1: 193–207. doi:10.1111/ele.13418.
  • Benham, P.M., and C.C. Witt. 2016. The dual role of Andean topography in primary divergence: Functional and neutral variation among populations of the hummingbird, Metallura tyrianthina. BMC Evolutionary Biology 16, no. 1: 22. doi:10.1186/s12862-016-0595-2.
  • Caballero-Villalobos, L., F. Fajardo-Gutiérrez, M. Calbi, and G.A. Silva-Arias. 2021. Climate change can drive a significant loss of suitable habitat for Polylepis quadrijuga, a treeline species in the sky islands of the northern Andes. Frontiers in Ecology and Evolution 9, no. 6: 1–16. doi:10.3389/fevo.2021.661550.
  • Calabrese, J.M., G. Certain, C. Kraan, and C.F. Dormann. 2014. Stacking species distribution models and adjusting bias by linking them to macroecological models. Global Ecology and Biogeography 23, no. 1: 99–112. doi:10.1111/geb.12102.
  • Campos-Cerqueira, M., W.J. Arendt, J.M. Wunderle, and T.M. Aide. 2017. Have bird distributions shifted along an elevational gradient on a tropical mountain? Ecology and Evolution 7, no. 23: 9914–24. doi:10.1002/ece3.3520.
  • Campozano, L., R. Célleri, K. Trachte, J. Bendix, and E. Samaniego. 2016. Rainfall and cloud dynamics in the Andes: A southern Ecuador case study. Advances in Meteorology 2016: 1–15. http://www.hindawi.com/journals/amete/2016/3192765/
  • Campozano, L., K. Trachte, R. Célleri, E. Samaniego, J. Bendix, C. Albuja, and J.F. Mejia. 2018. Climatology and teleconnections of mesoscale convective systems in an Andean basin in southern Ecuador: The case of the Paute basin. Advances in Meteorology 2018: 1–13. doi:10.1155/2018/4259191.
  • Cárdenas, S., J.D. Cárdenas, B.O. Landázuri, G. Mogrovejo, F.J. Neira, A.M. Crespo, N. Breitbach, M. Schleuning, and B.A. Tinoco. 2020. Pollinator effectiveness in the mixed-pollination system of a Neotropical Proteaceae, Oreocallis grandiflora. Journal of Pollination Ecology 26, no. 5: 38–46. https://www.pollinationecology.org/index.php/jpe/article/view/601/198
  • Caro, T.M. 2010. Conservation by proxy: Indicator, umbrella, keystone, flagship, and other surrogate species. London, UK: Island Press.
  • Caro, T.M., and G. O’Doherty. 1999. On the use of surrogate species in conservation biology. Conservation Biology 13, no. 4: 805–14. doi:10.1046/j.1523-1739.1999.98338.x.
  • Carrillo-Rojas, G., B. Silva, R. Rollenbeck, R. Célleri, and J. Bendix. 2019. The breathing of the Andean highlands: Net ecosystem exchange and evapotranspiration over the region of southern Ecuador. Agricultural and Forest Meteorology 265, no. November 2018: 30–47. doi:10.1016/j.agrformet.2018.11.006.
  • Ceballos, G., P.R. Ehrlich, A.D. Barnosky, A. García, R.M. Pringle, and T.M. Palmer. 2015. Accelerated modern human–induced species losses: Entering the sixth mass extinction. Science Advances 1, no. 5: 1–6. doi:10.1126/sciadv.1400253.
  • Celleri, R., P. Willems, W. Buytaert, and J. Feyen. 2007. Space–time rainfall variability in the Paute basin, Ecuadorian Andes. Hydrological Processes 21, no. 24: 3316–27. doi:10.1002/hyp.6575.
  • Costa, H., G. Foody, S. Jiménez, and L. Silva. 2015. Impacts of species misidentification on species distribution modeling with presence-only data. ISPRS International Journal of Geo-Information 4, no. 4: 2496–518. doi:10.3390/ijgi4042496.
  • Critical Ecosystem Partnership Fund. 2021. Biodiversity hotspot of the tropical Andes: 2021 update. Pronaturaleza – Fundación Peruana por la Conservación de la Naturaleza. https://www.cepf.net/sites/default/files/tropical-andes-ecosystem-profile-2021-english.pdf (accessed September 30, 2021).
  • Cuesta, F., M. Peralvo, A. Merino-Viteri, M. Bustamante, F. Baquero, J.F. Freile, P. Muriel, and O. Torres-Carvajal. 2017. Priority areas for biodiversity conservation in mainland Ecuador. Neotropical Biodiversity 3, no. 1: 93–106. doi:10.1080/23766808.2017.1295705.
  • Devenish, C., D.F.D. Fernández, R.P. Clay, I.J. Davidson, and Í.Y. Zabala, eds. 2009. Important bird areas – priority sities for biodiversity conservation. Quito, Ecuador: BirdLife International, BirdLife Conservation Series No. 16.
  • Dybala, K.E., T. Gardali, and J.M. Eadie. 2013. Dependent vs. independent juvenile survival: Contrasting drivers of variation and the buffering effect of parental care. Ecology 94, no. 7: 1584–93. doi:10.1890/12-1443.1.
  • Fastré, C., H.P. Possingham, D. Strubbe, and E. Matthysen. 2020. Identifying trade-offs between biodiversity conservation and ecosystem services delivery for land-use decisions. Scientific Reports 10, no. 1: 7971. doi:10.1038/s41598-020-64668-z.
  • Fjeldså, J., and N. Krabbe. 1990. Birds of the high Andes. Svendborg, Denmark: Zoological Museum. University of Copenhagen and Apollo Books.
  • Foley, J. A. 2005. Global consequences of land use. Science 309: 570–4. doi:10.1126/science.1111772.
  • Foster, P. 2001. The potential negative impacts of global climate change on tropical montane cloud forests. Earth-Science Reviews 55, no. 1–2: 73–106. doi:10.1016/S0012-8252(01)00056-3.
  • Freile, J.F., T. Santander, G. Jiménez-Uzcátegui, L. Carrasco, D.F. Cisneros-Heredia, E.A. Guevara, M. Sánchez-Nivicela, and B.A. Tinoco. 2019. Lista roja de las aves del Ecuador. Quito, Ecuador: Ministerio del Ambiente, Aves y Conservación, Comité Ecuatoriano de Registros Ornitológicos, Fundación Charles Darwin, Universidad del Azuay, Red Aves Ecuador, Universidad San Francisco de Quito.
  • Gale, N. 2000. The relationship between canopy gaps and topography in a western Ecuadorian rain forest. Biotropica 32: 653–61. doi:10.1646/0006-3606(2000)032[0653:TRBCGA]2.0.CO;2.
  • Gallagher, R.V., L. Hughes, and M.R. Leishman. 2013. Species loss and gain in communities under future climate change: Consequences for functional diversity. Ecography 36, no. 5: 531–40. doi:10.1111/j.1600-0587.2012.07514.x.
  • Gardner, T.A., J. Barlow, R. Chazdon, R.M. Ewers, C.A. Harvey, C.A. Peres, and N.S. Sodhi. 2009. Prospects for tropical forest biodiversity in a human-modified world. Ecology Letters 12, no. 6: 561–82. doi:10.1111/j.1461-0248.2009.01294.x.
  • Guillera-Arroita, G., J.J. Lahoz-Monfort, and J. Elith. 2014. MaxEnt is not a presence-absence method: A comment on Thibaud et al. Methods in Ecology and Evolution 5, no. 11: 1192–7. doi:10.1111/2041-210X.12252.
  • Hannah, L., P.R. Roehrdanz, K.C. Krishna Bahadur, E.D.G. Fraser, C.I. Donatti, L. Saenz, T.M. Wright, et al. 2020. The environmental consequences of climate-driven agricultural frontiers. PLoS One 15, no. 2: e0228305. doi:10.1371/journal.pone.0228305.
  • Hijmans, R., and C. Graham. 2006. The ability of climate envelope models to predict the effect of climate change on species distributions. Global Change Biology 12, no. 12: 2272–81. doi:10.1111/j.1365-2486.2006.01256.x.
  • Hofstede, R.G.M., and L.D. Llambí. 2020. Plant diversity in páramo—neotropical high mountain humid grasslands. In Encyclopedia of the world’s biomes, vol. 1–5, 362–72. Elsevier. doi:10.1016/B978-0-12-409548-9.11858-5.
  • Jiménez-Rivillas, C., J.J. García, M.A. Quijano-Abril, J.M. Daza, and J.J. Morrone. 2018. A new biogeographical regionalization of the Páramo biogeographic province. Australian Systematic Botany 31, no. 4: 296. doi:10.1071/SB18008.
  • Karger, D.N., O. Conrad, J. Böhner, T. Kawohl, H. Kreft, R.W. Soria-Auza, N.E. Zimmermann, H.P. Linder, and M. Kessler. 2017. Climatologies at high resolution for the earth’s land surface areas. Scientific Data 4, no. 1: 170122. doi:10.1038/sdata.2017.122.
  • Karger, D.N., D.R. Schmatz, G. Dettling, and N.E. Zimmermann. 2020. High-resolution monthly precipitation and temperature time series from 2006 to 2100. Scientific Data 7, no. 1: 248. doi:10.1038/s41597-020-00587-y.
  • Kattan, G.H., P. Franco, C.A. Saavedra-Rodríguez, C. Valderrama, V. Rojas, D. Osorio, and J. Martínez. 2006. Spatial components of bird diversity in the Andes of Colombia: Implications for designing a regional reserve system. Conservation Biology 20, no. 4: 1203–11. doi:10.1111/j.1523-1739.2006.00402.x.
  • Kessler, M., S.K. Herzog, J. Fjeldså, and K. Bach. 2001. Species richness and endemism of plant and bird communities along two gradients of elevation, humidity and land use in the Bolivian Andes. Diversity and Distributions 7, no. 1–2: 61–77. doi:10.1046/j.1472-4642.2001.00097.x.
  • Koenen, M. 2000. Effects of fire on birds in Paramo habitat of northern Ecuador. Ornitologia Neotropical 11, no. 1986: 155–63.
  • Latta, S.C., B.A. Tinoco, P.X. Astudillo, and C.H. Graham. 2011. Patterns and magnitude of temporal change in avian communities in the Ecuadorian Andes. Condor 113, no. 1: 24–40. doi:10.1525/cond.2011.090252.
  • Lazo, P.X., G.M. Mosquera, J.J. McDonnell, and P. Crespo. 2019. The role of vegetation, soils, and precipitation on water storage and hydrological services in Andean Páramo catchments. Journal of Hydrology 572, no. March: 805–19. doi:10.1016/j.jhydrol.2019.03.050.
  • Lees, A.C., K.V. Rosenberg, V. Ruiz-Gutierrez, S. Marsden, T.S. Schulenberg, and A.D. Rodewald. 2020. A roadmap to identifying and filling shortfalls in Neotropical ornithology. The Auk 137, no. 4: 1–17. doi:10.1093/auk/ukaa048.
  • Lessmann, J., J. Muñoz, and E. Bonaccorso. 2014. Maximizing species conservation in continental Ecuador: A case of systematic conservation planning for biodiverse regions. Ecology and Evolution 4, no. 12: 2410–22. doi:10.1002/ece3.1102.
  • Matson, E.C., and D. Bart. 2013. Interactions among fire legacies, grazing and topography predict shrub encroachment in post-agricultural páramo. Landscape Ecology 28, no. 9: 1829–40. doi:10.1007/s10980-013-9926-5.
  • Matson, E.C., and D.J. Bart. 2014. Plant-community responses to shrub cover in a páramo grassland released from grazing and burning. Austral Ecology 39, no. 8: 918–28. doi:10.1111/aec.12157.
  • McKinney, M.L., and J.L. Lockwood. 1999. Biotic homogenization: A few winners replacing many losers in the next mass extinction. Trends in Ecology and Evolution 14, no. 11: 450–3. doi:10.1016/S0169-5347(99)01679-1.
  • Merow, C., M.J. Smith, and J.A. Silander. 2013. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 36, no. 10: 1058–69. doi:10.1111/j.1600-0587.2013.07872.x.
  • Morales, N.S., I.C. Fernández, and V. Baca-González. 2017. MaxEnt’s parameter configuration and small samples: Are we paying attention to recommendations? A systematic review. PeerJ 5, no. 3: e3093. doi:10.7717/peerj.3093.
  • Myers, N., R.A. Mittermeier, C.G. Mittermeier, G.A.B. da Fonseca, and J. Kent. 2000. Biodiversity hotspots for conservation priorities. Nature 403, no. 6772: 853–8. doi:10.1038/35002501.
  • Neill, D.A. 1999. Vegetación. In Catalogue of the vascular plants of Ecuador, ed. P. M. Jørgensen and S. León-Yánez, vol. 75, 1–1182, 13–25. Monographs in Systematic Botany from the Missouri Botanical Garden. St. Louis, MO: Missouri Botanical Garden Press.
  • Newbold, T., L.N. Hudson, A.P. Arnell, S. Contu, A. De Palma, S. Ferrier, S.L.L. Hill, et al. 2016. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353, no. 6296: 288–91. doi:10.1126/science.aaf2201.
  • Norambuena, H.V., and P. Van Els. 2021. A general scenario to evaluate evolution of grassland birds in the Neotropics. Ibis 163, no. 2: 722–7. doi:10.1111/ibi.12905.
  • Norment, C.J., M.C. Runge, and M.R. Morgan. 2010. Breeding biology of grassland birds in Western New York: Conservation and management implications. Avian Conservation and Ecology 5, no. 2: art3. doi:10.5751/ACE-00399-050203.
  • Ochoa-Sánchez, A., P. Crespo, and R. Célleri. 2018. Quantification of rainfall interception in the high Andean tussock grasslands. Ecohydrology 11, no. 3: e1946. https://onlinelibrary.wiley.com/doi/10.1002/eco.1946
  • Phillips, S. J. 2017. A brief tutorial on Maxent. http://biodiversityinformatics.amnh.org/open_source/maxent/ (accessed February 26, 2022).
  • Phillips, S.J., R.P. Anderson, and R.E. Schapire. 2006. Maximum entropy modeling of species geographic distributions. International Journal of Global Environmental Issues 190, no. 3–4: 231–59. doi:10.1504/IJGENVI.2006.010156.
  • Phillips, S.J., and M. Dudík. 2008. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 31: 161–75. doi:10.1111/j.2007.0906-7590.05203.x.
  • Poulsen, B.O., and N. Krabbe. 1998. Avifaunal diversity of five high-altitude cloud forests on the Andean western slope of Ecuador: Testing a rapid assessment method. Journal of Biogeography 25, no. 1: 83–93. doi:10.1046/j.1365-2699.1998.251174.x.
  • Remsen, J.V., Jr, J.I. Areta, E. Bonaccorso, S. Claramunt, A. Jaramillo, D.F. Lane, J.F. Pacheco, M.B. Robbins, F.G. Stiles, and K.J. Zimmer. 2021. A classification of the bird species of South America. American Ornithological Society. http://www.museum.lsu.edu/~Remsen/SACCBaseline.htm (accessed January 19, 2021).
  • Roach, N.S., N. Urbina-Cardona, and T.E. Lacher. 2020. Land cover drives amphibian diversity across steep elevational gradients in an isolated neotropical mountain range: Implications for community conservation. Global Ecology and Conservation 22, no. 6: e00968. doi:10.1016/j.gecco.2020.e00968.
  • Sala, O.E., F. Stuart Chapin III, J.J. Armesto, E. Berlow, J. Bloomfield, R. Dirzo, E. Huber-Sanwald, et al. 2000. Global biodiversity scenarios for the year 2100. Science 87, no. 5459: 1770–4. doi:10.1126/science.287.5459.1770.
  • Sarmiento, F.O. 2000. Breaking mountain paradigms: Ecological effects on human impacts in managed Tropandean landscapes. AMBIO: A Journal of the Human Environment 29: 423–31. doi:10.1579/0044-7447-29.7.423.
  • Sarmiento, F.O., and L.M. Frolich. 2002. Andean cloud forest tree lines. Mountain Research and Development 22, no. 3: 278–87. doi:10.1659/0276-4741(2002)022[0278:ACFTL]2.0.CO;2.
  • Sevillano-Ríos, C.S., and A.D. Rodewald. 2017. Avian community structure and habitat use of Polylepis forests along an elevation gradient. PeerJ 5, no. 4: e3220. doi:10.7717/peerj.3220.
  • Sklenár, P., and P.M. Ramsay. 2001. Diversity of zonal páramo plant communities in Ecuador. Diversity and Distributions 7, no. 3: 113–24. doi:10.1046/j.1472-4642.2001.00101.x.
  • Soares, L., K.L. Cockle, E. Ruelas Inzunza, J.T. Ibarra, C.I. Miño, S. Zuluaga, E. Bonaccorso, et al. 2023. Neotropical ornithology: Reckoning with historical assumptions, removing systemic barriers, and reimagining the future. Ornithological Applications 1–103. doi:10.1093/ornithapp/duac046.
  • Stattersfield, A.J., M.J. Crosby, A.J. Long, and D.C. Wege. 1998. EBAs and restricted-range bird species listed by country. Endemic bird areas of the world. Priorities for biodiversity conservation. BirdLife Conservation Series No. 7. Cambridge, UK: BirdLife International.
  • Stotz, D.F., J.W. Fitzpatrick, T.A. Parker III, and D.K. Moskovits. 1996. Neotropical birds: Ecology and conservation. Chicago, IL: University of Chicago Press.
  • Suarez, G., and E. Medina. 2001. Vegetation structure and soil properties in Ecuadorian Paramo grasslands with different histories of burning and grazing. Arctic, Antarctic and Alpine Research 33, no. 2: 158. doi:10.2307/1552216.
  • Sylvester, S.P., F. Heitkamp, M.D.P.V. Sylvester, H.F. Jungkunst, H.J.M. Sipman, J.M. Toivonen, C.A. Gonzales Inca, J.C. Ospina, and M. Kessler. 2017. Relict high-Andean ecosystems challenge our concepts of naturalness and human impact. Scientific Reports 7, no. 1: 3334. doi:10.1038/s41598-017-03500-7.
  • Tinoco, B.A., P.X. Astudillo, S.C. Latta, and C.H. Graham. 2009. Distribution, ecology and conservation of an endangered Andean hummingbird: The violet-throated metaltail (Mettallura baroni). Bird Conservation International 19, no. 1: 63–76. doi:10.1017/S0959270908007703.
  • Udy, K., M. Fritsch, K.M. Meyer, I. Grass, S. Hanß, F. Hartig, T. Kneib, et al. 2021. Environmental heterogeneity predicts global species richness patterns better than area. Keil P, editor. Global Ecology and Biogeography 30, no. 4: 842–51. doi:10.1111/geb.13261.
  • Waldron, A., D.C. Miller, D. Redding, A. Mooers, T.S. Kuhn, N. Nibbelink, J.T. Roberts, J.A. Tobias, and J.L. Gittleman. 2017. Reductions in global biodiversity loss predicted from conservation spending. Nature 551, no. 7680: 364–7. doi:10.1038/nature24295.
  • Wallis, C.I.B., D. Paulsch, J. Zeilinger, B. Silva, G.F. Curatola Fernández, R. Brandl, N. Farwig, and J. Bendix. 2016. Contrasting performance of Lidar and optical texture models in predicting avian diversity in a tropical mountain forest. Remote Sensing of Environment 174, no. 1: 223–32. doi:10.1016/j.rse.2015.12.019.
  • Willig, M.R., and S.J. Presley. 2016. Biodiversity and metacommunity structure of animals along altitudinal gradients in tropical montane forests. Journal of Tropical Ecology 32, no. 5: 421–36. doi:10.1017/S0266467415000589.