296
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Accounting deviations between the measured and simulated impact pressures in high-density snow avalanches

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2302836 | Received 17 May 2023, Accepted 03 Jan 2024, Published online: 09 Feb 2024

References

  • Aggarwal, R. K., 2019. New database for the estimation of dynamic coefficient of friction of snow. International Symposium on Snow Avalanches & Mitigation strategies (SAMS): 7–20 July, Chandigarh, India.
  • Aggarwal, R. K. 2022. New experimental investigation into the angle of repose of snow. Journal of Cold Regions Engineering 36, no. 2: 06022002. doi:10.1061/(ASCE)CR1943-54950000276.
  • Aggarwal, R. K., and A. Kumar. 2012. 2-D computational fluid dynamics model for avalanche flow interaction with an obstacle for snow chute at Dhundhi. International Symposium on Cryosphere and Climate Change (ISCCC): 2-4 April, Manali, India.
  • Alexandrou, A. N., P. L. Mennb, G. Georgiou, and V. Entov. 2003. Flow instabilities of Herschel–Bulkley fluids. Journal of Non-Newtonian Fluid Mechanics 116: 19–32. doi:10.1016/S0377-0257(03)00113-7.
  • Al-Hashemi, H. M., and O. Al-Amoudi. 2018. A review on the angle of repose of granular materials. Powder Technology 330: 397–417. doi:10.1016/j.powtec.2018.02.003.
  • ANSYS Inc. 2015. User manual of ANSYS Fluent 15.0 software. Southpointe 275, Technology Drive, Canonsburg, USA.
  • Baroudi, D., B. Sovilla, and E. Thibert. 2011. Effects of flow regime and sensor geometry on snow avalanche impact-pressure measurements. Journal of Glaciology 57, no. 202: 277–88. doi:10.3189/002214311796405988.
  • Baroudi, D., and E. Thibert. 2009. An instrumented structure to measure avalanche impact pressure: Error analysis from Monte Carlo simulations. Cold Regions Science and Technology 59, no. 2–3: 242–50. doi:10.1016/j.coldregions.2009.05.010.
  • Bovet, E., B. Chiaia, V. de Biagi, and B. Frigo. 2011. Pressure of snow avalanches against buildings. Applied Mechanics and Materials 82: 392–7. doi:10.4028/www.scientific.net/AMM.82.392.
  • Bovet, E., B. Chiaia, and L. Preziosi. 2010. A new model for snow avalanche dynamics based on non-Newtonian fluids. Meccanica 45, no. 6: 753–65. doi:10.1007/s11012-009-9278-z.
  • Bovet, E., B. Chiaia, L. Preziosi, and F. Barpi. 2007. The level set method applied to avalanches. Excerpt from the Proceedings of the COMSOL Users Conference: 23-24 October, Grenoble, France.
  • Caccamo, P., T. Faug, H. Bellot, and F. Naaim-Bouvet. 2011. Experiments on a dry granular avalanche impacting an obstacle: Dead zone, granular jump and induced forces. WIT Transactions on the Built Environment 115: 53–62. doi:10.2495/FSI110061.
  • Christen, M., J. Kowalski, and P. Bartelt. 2010. RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Regions Science and Technology 63, no. 1–2: 1–14. doi:10.1016/j.coldregions.2010.04.005.
  • de Biagi, V., B. Chiaia, and B. Frigo. 2015. Impact of snow avalanche on buildings: Forces estimation from structural back-analyses. Engineering Structures 92, no. 1: 15–28. doi:10.1016/j.engstruct.2015.03.004.
  • Dent, J. D., and T. E. Lang. 1983. A biviscous modified Bingham model of snow avalanche motion. Annals of Glaciology 4: 42–6. doi:10.3189/S0260305500005218.
  • Domnik, B., and S. P. Pudasaini. 2012. Full two-dimensional rapid chute flows of simple viscoplastic granular materials with a pressure-dependent dynamic slip-velocity and their numerical simulations. Journal of Non-Newtonian Fluid Mechanics 173–174: 72–86. doi:10.1016/j.jnnfm.2012.03.001.
  • Eglit, M. E., V. S. Kulibaba, and M. Naaim. 2007. Impact of a snow avalanche against an obstacle: Formation of shock waves. Cold Regions Science and Technology 50, no. 1–3: 86–96. doi:10.1016/j.coldregions.2007.06.005.
  • Faug, T., P. Caccamo, and B. Chanut. 2012. A scaling law for impact force of a granular avalanche flowing past a wall. Geophysical Research Letters 39, no. 23: L23401(1–5). doi:10.1029/2012GL054112.
  • Faug, T., B. Chanut, R. Beguin, M. Naaim, E. Thibert, and D. Baroudi. 2010. A simple analytical model for pressure on obstacles induced by snow avalanches. Annals of Glaciology 51, no. 54: 1–8. doi:10.3189/172756410791386481.
  • Fierz, C., R. L. Armstrong, Y. Durand, P. Etchevers, E. Greene, D. M. McClung, K. Nishimura, P. K. Satyawali, and S. A. Sokratov. 2009. The international classification for seasonal snow on the ground. In IHP-VII Technical Documents in Hydrology N°83, IACS Contribution N°1. Paris: UNESCO-IHP.
  • Frigo, B., P. Bartelt, B. Chiaia, I. Chiambretti, and M. Maggioni. 2020. Reverse dynamical investigation of the catastrophic wood-snow avalanche of 18 January 2017 at Rigopiano, Gran Sasso National Park, Italy. International Journal of Disaster Risk Science 12, no. 1: 40–55. doi: 10.1007/s13753-020-00306-6.
  • Furukawa, I. 1957. Impact of avalanche. Journal of the Japanese Society of Snow and Ice 19 no, 5: 140–1. doi:10.5331/seppyo.19.140.
  • Hauksson, S., M. Pagliardi, M. Barbolini, and T. Johannesson. 2007. Laboratory measurements of impact forces of supercritical granular flow against mast-like obstacles. Cold Regions Science and Technology 49, no. 1: 54–63. doi:10.1016/j.coldregions.2007.01.007.
  • Hirt, C. W., and B. D. Nichols. 1981. Volume of Fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics 39, no. 1: 201–25. doi:10.1016/0021-9991(81)90145-5.
  • Jaedicke, C., M. A. Kern, P. Gauer, M. A. Baillifard, and K. Platzer. 2008. Chute experiments on slushflow dynamics. Cold Regions Science and Technology 51, no. 2–3: 156–67. doi:10.1016/j.coldregions.2007.03.011.
  • Khapayev, S. A. 1978. Dynamics of avalanche natural complexes: An example from the high-mountain Teberda State Reserve, Caucasus Mountains, USSR. Arctic and Alpine Research 10, no. 2: 335–44. doi:10.2307/1550765.
  • Kyburz, M. L., B. Sovilla, J. Gaume, and C. Ancey. 2022. Physics-based estimates of drag coefficients for the impact pressure calculation of dense snow avalanches. Engineering Structures 254, no. 1–17: 113478. doi:10.1016/j.engstruct.2021.113478.
  • Lang, T. E., and J. D. Dent. 1980. Scale modeling of snow-avalanche impact on structures. Journal of Glaciology 26, no. 94: 189–96. doi:10.3189/S0022143000010728.
  • Maggioni, M., M. Barbero, F. Barpi, M. Borri-Brunetto, V. de Biagi, M. Freppaz, B. Frigo, O. Pallara, and B. Chiaia. 2019. Snow avalanche impact measurements at the Seehore Test Site in Aosta Valley (NW Italian Alps). Geosciences 9, no. 471: 1–20. doi:10.3390/geosciences9110471.
  • McClung, D. M., and P. Schaerer. 1999. The avalanche handbook. The Mountaineers, Seattle, Washington, USA.
  • McClung, D. M., and P. A. Schaerer. 1985. Characteristics of flowing snow and avalanche impact pressures. Annals of Glaciology 6: 9–14. doi:10.3189/1985AoG6-1-9-14.
  • Mead, L. B., H. Nakamura, T. E. Lang, and J. D. Dent. 1986. Comparison of experimental and computer modeling of snow-block impact on structures. Journal of Glaciology 32, no. 112: 321–4. doi:10.3189/S0022143000011989.
  • Naaim, M., T. Faug, E. Thibert, N. Eckert, G. Chambon, F. Naaim, and H. Bellot. 2008. Snow avalanche pressure on obstacles. International Snow Science Workshop, 21–27 September, Whistler, B.C., Canada.
  • Nakamura, T. 1987. A newly designed chute for snow avalanche experiments. International Association of Hydrological Sciences (IAHS) Publication 162: 441–51.
  • Nishimura, K., and N. Maeno. 1989. Contribution of viscous forces to avalanche dynamics. Annals of Glaciology 13: 202–6. doi:10.3189/S0260305500007898.
  • Oda, K., S. Moriguchi, I. Kamiishi, A. Yashima, K. Sawada, and A. Sato. 2011. Simulation of a snow avalanche model test using computational fluid dynamics. Annals of Glaciology 52, no. 58: 57–64. doi:10.3189/172756411797252284.
  • Patankar, S. V. 2009. Numerical heat transfer and fluid flow. New York, USA: Taylor & Francis Group, CRC press.
  • Pedersen, R. R., J. D. Dent, and T. E. Lang. 1979. Forces on structures impacted and enveloped by avalanches. Journal of Glaciology 22, no. 88: 529–34. doi:10.3189/S0022143000014507.
  • Salway, A. A. 1978. A seismic and pressure transducer system for monitoring velocities and impact pressures of snow avalanches. Arctic and Alpine Research 10, no. 4: 769–74. doi:10.1080/00040851.1978.12004014.
  • Sheikh, A. H., S. C. Verma, and A. Kumar. 2008. Interaction of retarding structures with simulated avalanches in snow chute. Current Science 94(7): 916–21. http://www.jstor.org/stable/24101748.
  • Som, S. K., and G. Biswas. 2008. Introduction to fluid mechanics and fluid machines. Revised second ed. New Delhi, India: Tata McGraw-Hill Publishing Company Ltd.
  • Sovilla, B., T. Faug, A. Kohler, D. Baroudi, J. Fischer, and E. Thibert. 2016. Gravitational wet avalanche pressure on pylon-like structures. Cold Regions Science and Technology 126: 66–75. doi:10.1016/j.coldregions.2016.03.002.
  • Sovilla, B., M. Kyburz, C. Ligneau, J. T. Fischer, and M. Schaer. 2020. Spatial and temporal variability of snow avalanche impact pressure and its importance for structural design. 22nd EGU General Assembly Conference Abstracts Paper No. 813. doi:10.5194/egusphere-egu2020-8133
  • Sovilla, B., M. Schaer, M. Kern, and P. Bartelt. 2008. Impact pressures and flow regimes in dense snow avalanches observed at the Vall’ee de la Sionne Test Site. Journal of Geophysical Research 113, no. F1: 1–14. doi:10.1029/2006JF000688.
  • Sovilla, B., M. Schaer, and L. Rammer. 2008. Measurements and analysis of full-scale avalanche impact pressure at the Vallée de la Sionne test site. Cold Regions Science and Technology 51, no. 2–3: 122–37. doi:10.1016/j.coldregions.2007.05.006.
  • Thibert, E., D. Baroudi, A. Limam, and P. Berthet-Rambaud. 2008. Avalanche impact pressure on an instrumented structure. Cold Regions Science and Technology 54, no. 3: 206–15. doi:10.1016/j.coldregions.2008.01.005.
  • Thibert, E., T. Faug, H. Bellot, and D. Baroudi. 2013. Avalanche impact pressure on a plate-like obstacle. International Snow Science Workshop, 7-11 October, Grenoble-Chamonix, France.
  • Upadhyay, A., A. Kumar, and A. Chaudhary. 2010. Velocity measurements of wet snow avalanche on the Dhundi snow chute. Annals of Glaciology 51, no. 54: 139–45. doi:10.3189/172756410791386580.
  • Verma, S. C., A. Kumar, G. R. Panesar, A. K. Shukla, and P. Mathur. 2004. An experimental study of snow avalanche friction parameters using snow chute. International Symposium on Snow Monitoring and Avalanches (ISSMA), Manali, India, 12-16 April.
  • Voellmy, A. 1955. Ueber die Zerstoerunskraft von Lawinen Schweizerische Bauzeitung. Jahrg 73: 159–65. 212-217, 246-249, 280-285 [English translation: On the destructive force of avalanches, Translated by R.E. Tate, U.S. Department of Agriculture Forest Service, Alta Avalanche Study Center, Wasatch National Forest, Translation No. 2, 1964].