212
Views
0
CrossRef citations to date
0
Altmetric
Research Article

An experimental assessment of active and passive dispersal of red snow algae on the Harding Icefield, southcentral Alaska

ORCID Icon &
Article: 2370905 | Received 15 Jan 2024, Accepted 10 Jun 2024, Published online: 15 Jul 2024

References

  • Barnett, T. P., J. C. Adam, and D. P. Lettenmaier. 2005. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438 (7066):303–10. doi:10.1038/nature04141.
  • Bischoff, Y. 2007. Diversité et mobilité des algues de neige dans les Alpes suisses. Geneva, Switzerland: Université de Genève. doi:10.13097/archive-ouverte/unige:516.
  • Brown, S. P., and A. E. Tucker. 2020. Distribution and biogeography of Sanguina snow algae: Fine‐scale sequence analyses reveal previously unknown population structure. Ecology and Evolution 10 (20):11352–61. doi:10.1002/ece3.6772.
  • Cook, J. M., A. J. Hodson, A. S. Gardner, M. Flanner, A. J. Tedstone, C. Williamson, T. D. L. Irvine-Fynn, J. Nilsson, R. Bryant, and M. Tranter. 2017. Quantifying bioalbedo: A new physically based model and discussion of empirical methods for characterising biological influence on ice and snow albedo. The Cryosphere 11 (6):2611–32. doi:10.5194/tc-11-2611-2017.
  • Curl, H., Jr., J. T. Hardy, and R. Ellermeier. 1972. Spectral absorption of solar radiation in alpine snowfields. Ecology 53, no. 6: 1189–94. doi:10.2307/1935433.
  • De Wit, R., and T. Bouvier. 2006. ‘Everything is everywhere, but, the environment selects’; what did Baas Becking and Beijerinck really say? Environmental Microbiology 8 (4):755–8. doi:10.1111/j.1462-2920.2006.01017.x.
  • Dial, R. J., G. Q. Ganey, and S. M. Skiles. 2018. What color should glacier algae be? An ecological role for red carbon in the cryosphere. FEMS Microbiology Ecology 94 (3):fiy007. doi:10.1093/femsec/fiy007.
  • Dove, A., J. Heldmann, C. McKay, and O. B. Toon. 2012. Physics of a thick seasonal snowpack with possible implications for snow algae. Arctic, Antarctic, and Alpine Research 44 (1):36–49. doi:10.1657/1938-4246-44.1.36.
  • Engstrom, C. B., and L. M. Quarmby. 2023. Satellite mapping of red snow on North American glaciers. Science Advances 9 (47):eadi3268. doi:10.1126/sciadv.adi3268.
  • Engstrom, C. B., B. B. Raymond, J. Albeitshawish, A. Bogdanovic, and L. M. Quarmby. 2024. Rosetta gen. nov. (Chlorophyta): Resolving the identity of red snow algal rosettes. Journal of Phycology 60 (2):275–98. doi:10.1111/jpy.13438.
  • Engstrom, C. B., S. N. Williamson, J. A. Gamon, and L. M. Quarmby. 2022. Seasonal development and radiative forcing of red snow algal blooms on two glaciers in British Columbia, Canada, summer 2020. Remote Sensing of Environment 280:113164. doi:10.1016/j.rse.2022.113164.
  • Ezzedine, J. A., C. Uwizeye, G. Si Larbi, G. Villain, M. Louwagie, M. Schilling, P. Hagenmuller, et al. 2023. Adaptive traits of cysts of the snow alga Sanguina nivaloides unveiled by 3D subcellular imaging. Nature Communications 14 (1). doi:10.1038/s41467-023-43030-7.
  • Fiołka, M. J., N. Takeuchi, W. Sofińska-Chmiel, S. Mieszawska, and I. Treska. 2020. Morphological and physicochemical diversity of snow algae from Alaska. Scientific Reports 10 (1). doi:10.1038/s41598-020-76215-x.
  • Ganey, G. Q., M. G. Loso, A. B. Burgess, and R. J. Dial. 2017. The role of microbes in snowmelt and radiative forcing on an Alaskan icefield. Nature Geoscience 10 (10):754–9. doi:10.1038/ngeo3027.
  • Hoham, R. W. 1975. The life history and ecology of the snow alga chloromonas pichinchae (Chlorophyta, Volvocales). Phycologia 14 (4):213–226. doi:10.2216/i0031-8884-14-4-213.1.
  • Hoham, R. W., and B. Duval. 2001. Microbial ecology of snow and freshwater ice with emphasis on snow algae. In Snow Ecology. An Interdisciplinary Examination of Snow-Covered Ecosystems, ed. H. G. Jones, J. W. Pomeroy, D. A. Walker, and R. W. Hoham, 168–228. Cambridge: Cambridge University Press.
  • Hoham, R. W., and D. Remias. 2020. Snow and glacial algae: A review. Journal of Phycology 56 (2):264–82. doi:10.1111/jpy.12952.
  • Hoham, R. W., S. C. Roemer, and J. E. Mullet. 1979. The life history and ecology of the snow alga Chloromonas brevispina comb. Nov. (Chlorophyta, Volvocales). Phycologia 18 (1):55–70. doi:10.2216/i0031-8884-18-1-55.1.
  • Hotaling, S., S. Lutz, R. J. Dial, A. M. Anesio, L. G. Benning, A. G. Fountain, J. L. Kelley, et al. 2021. Biological albedo reduction on ice sheets, glaciers, and snowfields. Earth-Science Reviews 220:103728. doi:10.1016/j.earscirev.2021.103728.
  • Intergovernmental Panel on Climate Change (IPCC). (Ed.). 2022. High mountain areas. In The Ocean and Cryosphere in a Changing Climate: Special Report of the Intergovernmental Panel on Climate Change, 131–202. Cambridge: Cambridge University Press. doi:10.1017/9781009157964.004.
  • Leya, T., A. Rahn, C. Lütz, and D. Remias. 2009. Response of Arctic snow and permafrost algae to high light and nitrogen stress by changes in pigment composition and applied aspects for biotechnology. FEMS Microbiology Ecology 67 (3):432–43. doi:10.1111/j.1574-6941.2008.00641.x.
  • Lutz, S., A. M. Anesio, S. E. Jorge Villar, and L. G. Benning. 2014. Variations of algal communities cause darkening of a Greenland glacier. FEMS Microbiology Ecology 89 (2):402–14. doi:10.1111/1574-6941.12351.
  • Lutz, S., A. M. Anesio, R. Raiswell, A. Edwards, R. J. Newton, F. Gill, and L. G. Benning. 2016. The biogeography of red snow microbiomes and their role in melting Arctic glaciers. Nature Communications 7 (1). doi:10.1038/ncomms11968.
  • Müller, T., T. Leya, and G. Fuhr. 2001. Persistent snow algal fields in Spitsbergen: Field observations and a hypothesis about the annual cell circulation. Arctic, Antarctic, and Alpine Research 33 (1):42–51. doi:10.1080/15230430.2001.12003403.
  • Procházková, L., T. Leya, H. Křížková, and L. Nedbalová. 2019. Sanguina nivaloides and Sanguina aurantia gen. et spp. nov. (Chlorophyta): The taxonomy, phylogeny, biogeography and ecology of two newly recognised algae causing red and orange snow. FEMS Microbiology Ecology 95 (6):fiz064. doi:10.1093/femsec/fiz064.
  • Raymond, B. B., C. B. Engstrom, and L. M. Quarmby. 2022. The underlying green biciliate morphology of the orange snow alga Sanguina aurantia. Current Biology 32 (2): R68–R69. doi:10.1016/j.cub.2021.12.005.
  • Remias, D. 2012. Cell structure and physiology of alpine snow and ice algae. In Plants in Alpine Regions: Cell physiology of adaption and survival strategies, ed. C. Lütz, 175–85. Vienna: Springer. doi:10.1007/978-3-7091-0136-0_13.
  • Remias, D., M. Pichrtová, M. Pangratz, C. Lütz, and A. Holzinger. 2016. Ecophysiology, secondary pigments and ultrastructure of Chlainomonas sp. (Chlorophyta) from the European Alps compared with Chlamydomonas nivalis forming red snow. FEMS Microbiology Ecology 92 (4):fiw030. doi:10.1093/femsec/fiw030.
  • Segawa, T., R. Matsuzaki, N. Takeuchi, A. Akiyoshi, F. Navarro, S. Sugiyama, T. Yonezawa, and H. Mori. 2018. Bipolar dispersal of red-snow algae. Nature Communications 9 (1). doi:10.1038/s41467-018-05521-w.
  • Soto, D. F., I. Gómez, and P. Huovinen. 2023. Antarctic snow algae: Unraveling the processes underlying microbial community assembly during blooms formation. Microbiome 11 (1):200. doi:10.1186/s40168-023-01643-6.
  • Takeuchi, N. 2001. The altitudinal distribution of snow algae on an Alaska glacier (Gulkana Glacier in the Alaska Range). Hydrological Processes 15 (18):3447–59. doi:10.1002/hyp.1040.
  • Takeuchi, N. 2013. Seasonal and altitudinal variations in snow algal communities on an Alaskan glacier (Gulkana glacier in the Alaska range). Environmental Research Letters 8, no. 3: 035002. doi:10.1088/1748-9326/8/3/035002.
  • Takeuchi, N., R. Dial, S. Kohshima, T. Segawa, and J. Uetake. 2006. Spatial distribution and abundance of red snow algae on the Harding Icefield, Alaska derived from a satellite image. Geophysical Research Letters 33 (21). doi:10.1029/2006GL027819.
  • Tesson, S. V. M., C. A. Skjøth, T. Šantl-Temkiv, and J. Löndahl. 2016. Airborne microalgae: Insights, opportunities, and challenges. Applied and Environmental Microbiology 82 (7):1978–91. doi:10.1128/AEM.03333-15.
  • Tucker, A. E., and S. P. Brown. 2022. Sampling a gradient of red snow algae bloom density reveals novel connections between microbial communities and environmental features. Scientific Reports 12 (1). doi:10.1038/s41598-022-13914-7.