183
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis and Antiviral Evaluation of Novel 4′-Trifluoromethylated 5′-Deoxyapiosyl Nucleoside Phosphonic Acids

, , &
Pages 747-766 | Received 21 Mar 2014, Accepted 22 Jun 2014, Published online: 05 Nov 2014

REFERENCES

  • Richman, D.D.; Fischl, M.A.; Grieco, M.H.; Gottlieb, M.S.; Volberding, P.A.; Laskin, O.L.; Leedom, J.M.; Groopman, J.E.; Mildvan, D.; Hirsch, M.S.; Jackson, G.G.; Durack, D.T.; Phil, D.; Lusinoff-Lehrman, S. The toxicity of azidothymidine (AZT) in the treatment of patients with AIDS and AIDS-related complex. A double-blind, placebo-controlled trial. N. Engl. J. Med. 1987, 317, 192–197;
  • Starnes, M.C.; Cheng, Y.C. Cellular metabolism of 2′,3′-dideoxycytidine, a compound active against human immunodeficiency virus in vitro. J. Biol. Chem. 1987, 262, 988–991;
  • Lambert, J.S.; Seidlin, M.; Reichman, R.C.; Plank, C.S.; Laverty, M.; Morse, G.D.; Knupp, C.; McLaren, C.; Pettinelli, C.; Valentine, F.T.; Dolin, R. 2′,3′-Dideoxyinosine (ddI) in patients with the acquired immunodeficiency syndrome or AIDS-related complex. A phase I trial. N. Engl. J. Med. 1990, 322, 1333–1340.
  • Boojamra, C.G.; Parrish, J.P.; Sperandio, D.; Gao, Y.; Petrakovsky, O.V.; Lee, S.K.; Markevitch, D.Y.; Vela, J.E.; Laflamme, G.; Chen, J.M.; Ray, A.S.; Barron, A.C.; Sparacino, M.L.; Desai, M.C.; Kim, C.U.; Cihlar, T.; Mackman, R.L. Design, synthesis, and anti-HIV activity of 4′-modified carbocyclic nucleoside phosphonate reverse transcriptase inhibitors. Bioorg. Med. Chem. 2009, 17, 1739–1746.
  • Okabe, M.; Sun, R.; Zenchoff, G.B. Synthesis of 1-(2,3-dideoxy-2-fluoro-β-D-threo-pentofuranosyl)cytosine (F-ddC). A promising agent for the treatment of acquired immune deficiency syndrome. J. Org. Chem. 1991, 56, 4392–4397;
  • Fleet, G.W.J.; Son, J.C.; Derome, A.E. Methyl 5-O-t-butyldiphenylsilyl-2-deoxy-α,β-D-threo-pentofuranoside as a divergent intermediate for the synthesis of 3′-substituted-2′,3′-dideoxynucleosides: synthesis of 3′-azido-3′-deoxythymidine, 3′-deoxy-3′-fluorothymidine and 3′-cyano-3′-deoxythymidine. Tetrahedron 1988, 44, 625–636;
  • Patrick, T.; Ye, W. Fluorinated intermediates in the synthesis of β-2-fluorodideoxynucleosides. J. Fluorine Chem. 1998, 90, 53–55;
  • McAtee, J.J.; Schinazi, R.F.; Liotta, D.C. A completely diastereo- selective electrophilic fluorination of a chiral, noncarbohydrate sugar ring precursor: application to the synthesis of several novel 2′-fluoronucleosides. J. Org. Chem. 1998, 63, 2161–2167;
  • Lee, K.; Choi, Y.; Gullen, E.; Schlueter-Wirtz, S.; Schinazi, R.F.; Cheng, Y.C.; Chu, C.K. Synthesis and anti-HIV and anti-HBV activities of 2′-fluoro-2′, 3′-unsaturated L-nucleosides. J. Med. Chem. 1999, 42, 1320–1328.
  • Lee, K.C.; Choi, Y.; Hong, J.H.; Schinazi, R.F.; Chu, C.K. New classes of fluorinated L-nucleosides; synthesis and antiviral activity. Nucleosides Nucleotides 1999, 18, 537–540.
  • Hertel, L.W.; Kroin, J.S.; Misner, J.W.; Tustin, J.M. Synthesis of 2-deoxy-2,2-difluoro-D-ribose and 2-deoxy-2,2′-difluoro-D-ribofuranosyl nucleosides. J. Org. Chem. 1988, 53, 2406–2409;
  • Xiang, Y.; Kotra, L.P.; Chu, C.K.; Schinazi, R.F. Synthesis and anti-HIV activities of 2′-deoxy-2′,2″-difluoro-β-L-ribofuranosyl-pyrimidine and -purine nucleosides. Bioorg. Med. Chem. Lett. 1995, 5, 743–748;
  • Fernandez, R.; Matheu, M.I.; Echarri, R.; Castillon, S. Synthesis of 2-deoxy-3,5-di-O-benzoyl-2,2-difluoro-D-ribose from D-glucose and D-mannose. A formal synthesis of gemcitabine. Tetrahedron 1998, 54, 3523–3532.
  • Roy, A.; Schneller, S.W. Enantiospecific synthesis of 5′,5′,5′-trifluoro-5′-deoxyneplanocin A. Tetrahedron Lett. 2005, 46, 8913–8915;
  • Zhang, X.; Qing, F.-L. Synthesis of novel L-2′,3′-dideoxy-2′-trifluoromethyl-4′- thiocytidines from α-trifluoromethyl-α,β-unsaturated ester. J. Org. Chem. 2002, 67, 1016–1019;
  • Jeannot, F.; Mathé, C.; Gosselin, G. Synthesis and antiviral evaluation of 3′-C-trifluoromethyl nucleoside derivatives bearing adenine as the base. Nucleosides Nucleotides Nucleic Acids 2001, 20, 755–758;
  • Jeannot, F.; Gosselin, G.; Standring, D.; Bryant, M.; Sommadossi, J.-P.; Loi, A.G.; Colla, P.L.; Mathé, C. Synthesis and studies of 3′-C-trifluoromethyl nucleoside analogues bearing adenine or cytosine as the base. Bioorg. Med. Chem. 2002, 10, 3153–3161;
  • Serafinowski, P.J.; Brown, C.A. New method for the preparation of some 2′- and 3′-trifluoromethyl-2′,3′-dideoxyuridine derivatives. Tetrahedron 2000, 56, 333–339.
  • Kozak, J.; Johnson, C.R. Synthesis of 4′-trifluoromethyl nucleoside analogs. Nucleosides Nucleotides 1998, 17, 2221–2239.
  • Holy, A. Phosphonomethoxyalkyl analogs of nucleotides. Curr. Pharm. Des. 2003, 9, 2567–2592;
  • De Clercq, E.; Holy, A. Phosphonomethoxyalkyl analogs of nucleotides. Nat. Rev. Drug Discovery 2005, 4, 928–940.
  • Vina, D.; Wu, T.; Renders, M.; Laflamme, G.; Herdewijn, P. Synthesis of 3′-O-phosphonomethyl nucleosides with an adenine base moiety. Tetrahedron 2007, 63, 2634–2646.
  • Schöning, K.; Scholz, P.; Guntha, S.; Wu, X.; Krishnamurthy, R.; Eschenmoser, A. Chemical etiology of nucleic acid structure: the α-threofuranosyl-(3′→2′) oligonucleotide system. Science 2000, 290, 1347–1351.
  • Jones, G.H.; Moffat, J.G. The synthesis of 6′-deoxyhomonucleoside-6′-phosphonic acids. J. Am. Chem. Soc. 1968, 90, 5336–5338;
  • Mikhailov, S.N.; Padyukova, N.S.; Karpeisky, M.Y.; Kolobush- kina, L.I.; Beigelman, L.N. Use of 5-deoxy-ribo-hexofuranose derivatives for the preparation of 5′-nucleotide phosphonates and homoribonucleosides. Coll. Czech. Chem. Comm. 1989, 54, 1055–1066;
  • Matulic-Adamic, J.; Haeberli, P.; Usman, N. Synthesis of 5′-deoxy-5′-difluoromethyl phosphonate nucleotide analogs. J. Org. Chem. 1995, 60, 2563–2569;
  • Pradere, U.; Amblard, F.; Coats, S.J.; Steven, J.; Schinazi, R.F. Synthesis of 5′-methylene-phosphonate furanonucleoside prodrugs: application to D-2′-deoxy-2′-α-fluoro-2 ‘-β-C-methyl nucleosides. Org. Lett. 2012, 14, 4426–4429.
  • De Clercq, E. The clinical potential of the acyclic (and cyclic) nucleoside phosphonates: the magic of the phosphonate bond. Biochem. Pharmacol. 2011, 82, 99–109.
  • Balzarini, J.; Hao, Z.; Herdewijn. P.; Johns, D.G.; De Clercq, E. Intracellular metabolism and mechanism of anti-retrovirus action of 9-(2-phosphonylmethoxyethyl)adenine, a potent anti-human immunodeficiency virus compound. Proc. Natl. Acad. Sci U S A. 1991, 88, 1499–1503;
  • Magee, W.C.; Aldern, K.A.; Hostetler, K.Y.; Evans, D.H. Cidofovir and (S)-9-[3-hydroxy-(2-phosphonomethoxy)propyl]adenine are highly effective inhibitors of vaccinia virus DNA polymerase when incorporated into the template strand. Antimicrob. Agents Chemother. 2008, 52, 586–597.
  • Wu, T.; Froeyen, M.; Kempeneers, V.; Pannecouque, C.; Wang, J.; Busson, R.; De Clercq, E.; Herdewijn, P. Deoxythreosyl phosphonate nucleosides as selective anti-HIV agents. J. Am. Chem. Soc. 2005, 127, 5056–5065.
  • Koh, Y.H.; Shim, J.H.; Wu, J.Z.; Zhong, W.; Hong, Z.; Girardet, J.L. Design, synthesis, and antiviral activity of adenosine 5′-phosphonate analogues as chain terminators against hepatitis C virus. J. Med. Chem. 2005, 48, 2867–2875.
  • Kim, C.U.; Luh, B.Y.; Misco, P.F.; Bronson, J.J.; Hitchcock, M.J.; Ghazzouli, I.; Martin, J.C. Acyclic purine phosphonate analogues as antiviral agents. Synthesis and structure-activity relationships. J. Med. Chem. 1990, 33, 1207–1213.
  • Allmendinger, T.; Lang, R.W. Fluorine-containing organozinc reagents – VI. The preparation of α-Trifluoromethyl-α,β-unsaturated carboxylic acid esters. Tetrahedron Lett. 1991, 32, 339–340;
  • Zhang, X.; Qing, F.-L.; Yu, Y. Synthesis of 2′,3′-dideoxy-2′-trifluoromethylnucleoaides from α-trifluoromethyl-α,β-unsaturated ester. J. Org. Chem. 2000, 65, 7075–7082.
  • Wipf, P.; Henningen, T.C.; Geib, S.J. Methyl- and (trifluoromethyl)alkene peptide isosteres: Synthesis and evaluation of their potential as β-turn promoters and peptide mimetics. J. Org. Chem. 1998, 63, 6088–6089;
  • Johnson, T.R.; Silverman, R.B. Syntheses of (Z)-and (E)-4-amino-2-(trifluoromethyl)-2-butenoic acid and their inactivation of gamma-aminobutyric acid aminotransferase. Bioorg. Med. Chem. 1999, 7, 1625–1636.
  • Kim, H.O.; Schinazi, R.F.; Shanmuganathan, K.; Jeong, L.S.; Beach, J.W.; Nampalli, S.; Cannon, D.L.; Chu, C.K. L-β-(2S,4S)- and L-alpha-(2S,4R)-dioxolanyl nucleosides as potential anti-HIV agents: asymmetric synthesis and structure-activity relationships. J. Med. Chem. 1993, 36, 519–528.
  • Hong, J.H.; Ko, O.H. Synthesis and antiviral evaluation of novel acyclic nucleosides. Bull. Kor. Chem. Soc. 2003, 24, 1284–1288;
  • Ko, O.H.; Hong, J.H. Efficient synthesis of novel carbocyclic nucleosides via sequential Claisen rearrangement and ring-closing metathesis. Tetrahedron Lett. 2002, 43, 6399–6402.
  • Kumamoto, H.; Topalis, D.; Broggi, J.; Pradere, U.; Roy, V.; Berteina-Raboin, S.; Nolan, S.P.; Deville-Bonne, D.; Andrei, G.; Snoeck, R.; Garin, D.; Crance, J.-M.; Agrofoglio, L.A. Preparation of acyclo nucleoside phosphonate analogues based on cross-metathesis. Tetrahedron 2008, 64, 3517–3526;
  • Montagu, A.; Pradere, U.; Roy, V.; Nolan, S.P.; Agrofoglio, L.A. Expeditious convergent procedure for the preparation of bis(POC) prodrugs of new (E)-4-phosphono-but-2-en-1-yl nucleosides. Tetrahedron 2011, 67, 5319–5328;
  • Huang, Q.; Herdewijn, P. Synthesis of (E)-3′-phosphonoalkenyl modified nucleoside phosphonates via a highly stereoselective olefin cross-metathesis reaction. J. Org. Chem. 2011, 76, 3742–3753.
  • Scholl, M.; Ding, S.; Lee, C.W.; Grubbs, R.H. Synthesis and activity of a new generation of ruthenium-based olefin metathesis catalysts coordinated with 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene ligands. Org. Lett. 1999, 1, 953–956.
  • Hocková, D.; Holý, A.; Masojídková, M.; Keough, D.T.; De Jersey, J.; Guddat, L.W. Synthesis of branched 9-[2-(2-phosphonoethoxy)ethyl]purines as a new class of acyclic nucleoside phosphonates which inhibit Plasmodium falciparum hypoxanthine-guanine-xanthine phosphoribosyltransferase. Bioorg. Med. Chem. 2009, 17, 6218–6232;
  • Bronson, J.J.; Ghazzouli, I.; Hitchocock, M.J.M.; Webb, R.R.; Martin, J.C. Synthesis and antiviral activity of the nucleotide analogue (S)-1-[3-hydroxy-2-(phosphonylmethoxy)propyl]cytosine. J. Med. Chem. 1989, 32, 1457–1463.
  • Robins, M.J.; Uznanski, B. Nucleic acid related compounds. Non-aqueous diazotization with t-butyl nitrite. Introduction of fluorine, chlorine, and bromine at C-2 of purine nucleosides. Can. J. Chem. 1981, 59, 2608–2611.
  • Vorbrüggen, H.; Ruh-Pohlenz, C. Handbook of Nucleoside Synthesis, Eds, John Wiley & Sons, Inc., New York, 2001.
  • Montgomery, J.; Hewson, K. Nucleosides of 2-fluoroadenine. J. Med. Chem. 1969, 12, 498–504.
  • Tong, G.L.; Ryan, K.J.; Lee, W.W.; Acton, E.M.; Goodman, L. Nucleosides of thioguanine and other 2-amino-6-substituted purines from 2-acetamido-5-chloropurine. J. Org. Chem. 1967, 32, 859–862.
  • Holy, A.; Votruba, I.; Merta, A.; Cerny, J.; Vesely, J.; Vlach, J.; Sediva, K.; Rosenberg, I.; Otmar, M.; Hrebabecky, H.; Travniekb, M.; Vonkac, V.; Snoeck, R.; De Clercq, E. Acyclic nucleotide analogues: synthesis, antiviral activity and inhibitory effects on some cellular and virus-encoded enzymes in vitro. Antiviral Res. 1990, 13, 295–311.
  • Pauwels, R.; Balzarini, J.; Baba, M.; Snoeck, R.; Schols, D.; Herdewijn, P.; Desmyter, J.; De Clercq, E. Rapid and automated tetrazolium-based colorimetric assay for the detection of anti-HIV compounds. J. Virol. Methods 1988, 20, 309–321.
  • All geometries were optimize with the framework of the density functional theory (DFT), with Spartan modeling software. The B3LYP functional with 6-31G* basis set was employed.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.