282
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis of Novel 4′α-Trifluoromethyl-2′β-C-Methyl-Carbodine Analogs as Anti-Hepatitis C Virus Agents

, &
Pages 79-91 | Received 18 Jun 2014, Accepted 28 Aug 2014, Published online: 26 Jan 2015

REFERENCES

  • Lavanchy, D. Evolving epidemiology of hepatitis C virus. Clin. Microbiol. Infect. 2011, 17, 107–115.
  • a) Heathcote, E.; Shiffman, M.; Cooksley, W.; Dusheiko, G.M.; Lee, S.S.; Balart, L.; Reindollar, R.; Reddy, R.K.; Wright, T.L.; Lin, A.; Hoffman, J.; De Pamphilis, J. Peginterferon alfa-2a in patients with chronic hepatitis C and cirrhosis. N. Engl. J. Med. 2000, 343, 1673–1680.
  • Zeuzem, S.; Berg, T.; Moeller, B.; Hinrichsen, H.; Mauss, S.; Wedemeyer, H.; Sarrazin, C.; Hueppe, D.; Zehnter, E.; Manns, M.P. Expert opinion on the treatment of patients with chronic hepatitis C. J. Viral Hepatitis 2009, 16, 75–90.
  • Clark, J.L.; Hollecker, L.; Mason, J.C.; Stuyver, L.J.; Tharnish, P.M.; Lostia, S.; McBrayer, T.R.; Schinazi, R.F.; Watanabe, K.A.; Otto, M.J.; Furman, P.A.; Stec, W.J.; Patterson, S.E.; Pankiewicz, K.W. Design, synthesis, and antiviral activity of 2′-deoxy-2′-fluoro-2′-C-methylcytidine, a potent inhibitor of hepatitis C virus replication. J. Med. Chem. 2005, 48, 5504–5508.
  • Sofia, M.J. Nucleotide prodrugs for HCV therapy. Antiviral Chem. Chemother. 2011, 22, 23–49.
  • Carrol, S.S.; Tomassini, J.E.; Bosserman, M.; Getty, K.; Stahlhut, M.W.; Eldrup, A.B.; Bhat, B.; Hall, D.; Simcoe, A.L.; LaFemina, R.; Rutkowski, C.A.; Wolanski, B.; Yang, Z.; Migliaccio, G.; De Francesco, R.; Kuo, L.C.; MacCross, M.; Olsen, D.B. Inhibition of hepatitis C virus RNA replication by 2′-modified nucleoside analogs. J. Biol. Chem. 2003, 278, 11979–11984.
  • Carroll, S.S.; Olsen, D.B. Nucleoside analog inhibitors of hepatitis C virus replication. Infect. Disord. Drug Targets 2006, 6, 17–29.
  • Eldrup, A.B.; Allerson, C.R.; Bennett, C.F.; Bera, S.; Bhat, B.; Bhat, N.; Bosserman, M.R.; Brooks, J.; Burlein, C.; Carroll, S.S.; Cook, P.D.; Getty, K.L.; MacCoss, M.; McMasters, D.R.; Olsen, D.B.; Prakash, T.P.; Prhavc, M.; Song, Q.; Tomassini, J.E.; Xia, J. Structure-activity relationship of purine ribonucleosides for inhibition of hepatitis C virus RNA-dependent RNA polymerase. J. Med. Chem. 2004, 47, 2283–2295.
  • Migliaccio, G.; Tomassini, J.E.; Carroll, S.S.; Tomei, L.; Altamura, S.; Bhat, B.; Bartholomew, L.; Bosserman, M.R.; Ceccacci, A.; Colwell, L.F.; Cortese, R.; De Francesco, R.; Eldrup, A.B.; Getty, K.L.; Hou, X.S.; LaFemina, R.L.; Ludmerer, S.W.; MacCoss, M.; McMasters, D.R.; Stahlhut, M.W.; Olsen, D.B.; Hazuda, D.J.; Flores, O.A. Characterization of resistance to non-obligate chain-terminating ribonucleoside analogs that inhibit hepatitis C virus replication in vitro. J. Biol. Chem. 2003, 278, 49164–49170.
  • Smith, D.B.; Martin, J.A.; Klumpp, K.; Baker, S.J.; Blomgren, P.A.; Devos, R.; Granycome, C.; Hang, J.; Hobbs, C.J.; Jiang, W.R.; Laxton, C.; Le Pogam, S.; Leveque, V.; Ma, H.; Maile, G.; Merrett, J.H.; Pichota, A.; Sarma, K.; Smith, M.; Swallow, S.; Symons, J.; Vesey, D.; Najera, I.; Cammack, N. Design, synthesis, and antiviral properties of 4′-substituted ribonucleosides as inhibitors of hepatitis C virus replication: the discovery of R1479. Bioorg. Med. Chem. Lett. 2007, 17, 2570–2576.
  • Smith, D.B.; Kalayanov, G.; Sund, C.; Winqvist, A.; Pinho, P.; Maltseva, T.; Morisson, V.; Leveque, V.; Rajyaguru, S.; LePogam, S.; Najera, I.; Benkestock, K.; Zhou, X.X.; Maag, H.; Cammack, N.; Martin, J.A.; Swallow, S.; Johansson, N.G.; Klumpp, K.; Smith, M. The design, synthesis, and antiviral activity of 4′-azidocytidine analogues against hepatitis C virus replication: the discovery of 4′-azidoarabinocytidine. J. Med. Chem. 2009, 52, 219–223.
  • Smith, D.B.; Kalayanov, G.; Sund, C.; Winqvist, A.; Maltseva, T.; Leveque, V.J.; Rajyaguru, S.; Le Pogam, S.; Najera, I.; Benkestock, K.; Zhou, X.X.; Kaiser, A.C.; Maag, H.; Cammack, N.; Martin, J.A.; Swallow, S.; Johansson, N.G.; Klumpp, K.; Smith, M. The design, synthesis, and antiviral activity of monofluoro and difluoro analogues of 4′-azidocytidine against hepatitis C virus replication: the discovery of 4′-azido-2′-deoxy-2′-fluorocytidine and 4′-azido-2′-dideoxy-2′,2′-difluorocytidine. J. Med. Chem. 2009, 52, 2971–2978.
  • Yang, M.; Schneller, S.W.; Korba, B. 5′-Homoneplanosine A inhibits hepatitis B and Hepatitis C. J. Med. Chem. 2005, 48, 5043–5046.
  • Kim, H.-J.; Sharon, A.; Bal, C.; Wang, J.; Allu, M.; Huang, Z.; Murray, M.G.; Bassit, L.; Schinazi, R.F.; Korba, B.; Chu, C.K. Synthesis and anti-hepatitis B virus and anti-hepatitis C virus activities of 7-deazaneplanocin A analogues in vitro. J. Med. Chem. 2009, 52, 206–213.
  • Stoeckler, J.D.; Cambor, C.; Parks, R.E. Jr. Human erythrocytic purine nucleoside phosphorylase: reaction with sugar-modified nucleoside substrates. Biochemistry 1980, 19, 102–107.
  • Allmendinger, T.; Lang, R.W. Fluorine-containing organozinc reagents - VI. The preparation of α-Trifluoromethyl-α,β-unsaturated carboxylic acid esters. Tetrahedron Lett. 1991, 32, 339–340.
  • Zhang, X.; Qing, F.-L.; Yu, Y. Synthesis of 2′,3′-dideoxy-2′-trifluoromethylnucleoaides from α-trifluoromethyl-α,β-unsaturated ester. J. Org. Chem. 2000, 65, 7075–7082.
  • Wipf, P.; Henningen, T.C.; Geib, S.J. Methyl- and (trifluoromethyl)alkene peptide isosteres: synthesis and evaluation of their potential as β-turn promoters and peptide mimetics. J. Org. Chem. 1998, 63, 6088–6089.
  • Johnson, T.R.; Silverman, R.B. Syntheses of (Z)-and (E)-4-amino-2-(trifluoromethyl)-2-butenoic acid and their inactivation of gamma-aminobutyric acid aminotransferase. Bioorg. Med. Chem. 1999, 7, 1625–1636.
  • Kim, S.; Kim, E.; Lee, W.; Hong, J.H. Synthesis and antiviral evaluation of novel 4′-trifluoromethylated 5′-deoxyapiosyl nucleoside phosphonic acids. Nucleos. Nucleot. Nucl. Acids 2014. In press.
  • Mancuso, A.J.; Huang, S.L.; Swern, D. Oxidation of long-chain and related alcohols to carbonyls by dimethyl sulfoxide “activated” by oxalyl chloride. J. Org. Chem. 1978, 43, 2480–2482.
  • Furstner, A. Olefin metathesis and beyond. Angew. Chem. Int. Ed. Engl. 2000, 39, 3012–3043.
  • Prunet, J. Recent methods for the synthesis of (E)-alkene units in macrocyclic natural products. Angew. Chem. Int. Ed. Engl. 2003, 42, 2826–2830.
  • Rivkin, A.; Cho, Y.S.; Gabarda, A.E.; Yoshimura, F.; Danishefsky, S.J. Application of ring-closing metathesis reactions in the synthesis of epothilones. J. Nat. Prod. 2004, 67, 139–143.
  • Deiter, A.; Martin, S.F. Synthesis of oxygen- and nitrogen-containing heterocycles by ring-closing metathesis. Chem. Rev. 2004, 104, 2199–2238.
  • Gaich, T.; Mulzer, J. Recent applications of olefin ring-closing metathesis (RCM) in the synthesis of biologically important alkaloids, terpenoids, polyketides and other secondary metabolites. Curr. Top. Med. Chem. 2005, 5, 1473–1494.
  • Doucet, H.; Hierso, J.C. Palladium coupling catalysts for pharmaceutical applications. Curr. Opin. Drug Discov. Develop. 2007, 10, 672–690.
  • Nicolaou, K.C.; Bulger, P.G.; Sarlah, D. Palladium-catalyzed cross-coupling reactions in total synthesis. Angew. Chem. Int. Ed. Engl. 2005, 44, 4442–4489.
  • Crimmins, M.T.; King, B.W.; Zuercher, W.J.; Choy, A.L. An efficient, general asymmetric aldol/ring-closing metathesis strategy. J. Org. Chem. 2000, 65, 8499–8509.
  • Koh, Y.H.; Shim, J.H.; Wu, J.Z.; Zhong, W.; Hong, Z.; Girardet, J.L. Design, synthesis, and antiviral activity of adenosine 5′-phosphonate analogues as chain terminators against hepatitis C virus. J. Med. Chem. 2005, 48, 2867–2875.
  • Trost, B.M.; Kuo, G.H.; Benneche, T. Transition-metal-controlled synthesis of (±)-aristeromycin and (±)-2′,3′-diepi-aristeromycin. An unusual directive effect in hydroxylations. J. Am. Chem. Soc. 1988, 110, 621–622.
  • Brown, B.; Hegedus, L.S. A novel, one-pot ring expansion of cyclobutanones. synthesis of carbovir and aristeromycin. J. Org. Chem. 2000, 65, 1865–1872.
  • Burlina, F.; Favre, A.; Fourrey, J.-L.; Thomas, M. An expeditious route to carbocyclic nucleosides: (−)-aristeromycin and (−)-carbodine. Bioorg. Med. Chem. Lett. 1997, 7, 247–250.
  • All geometries were optimized with the framework of the density functional theory (DFT), with Spartan modeling software. The B3LYP functional with 6-31G* basis set was employed.
  • Watashi, K.; Hijikata, M.; Hosaka, M.; Yamaji, M.; Shimotohno, K. Cyclosporin A suppresses replication of hepatitis C virus genome in cultured hepatocytes. Hepatol. 2003, 38, 1282–1288.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.