105
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Nucleoside Analog Activity in Malignant Melanoma Cell Lines

&
Pages 639-649 | Received 12 Jan 2015, Accepted 27 Apr 2015, Published online: 07 Aug 2015

REFERENCES

  • Braakhuis, B.J.; Ruiz van Haperen, V.W.; Boven, E.; Veerman, G.; Peters, G.J. Schedule-dependent antitumor effect of gemcitabine in in vivo model system. Semin. Oncol. 1995, 22, 42–46.
  • Bergman, A.M.; Munch-Petersen, B.; Jensen, P.B.; Sehested, M.; Veerman, G.; Voorn, D.A.; Smid, K.; Pinedo, H.M.; Peters, G.J. Collateral sensitivity to gemcitabine (2’,2’-difluorodeoxycytidine) and cytosine arabinoside of daunorubicin- and VM-26-resistant variants of human small cell lung cancer cell lines. Biochem. Pharmacol. 2001, 61, 1401–1408.
  • Ruiz van Haperen, V.W.; Veerman, G.; Eriksson, S.; Boven, E.; Stegmann, A.P.; Hermsen, M.; Vermorken, J.B.; Pinedo, H.M.; Peters, G.J. Development and molecular characterization of a 2’,2’-difluorodeoxycytidine-resistant variant of the human ovarian carcinoma cell line A2780. Cancer Res. 1994, 54, 4138–4143.
  • Bonate, P.L.; Arthaud, L.; Cantrell, W.R., Jr.; Stephenson, K.; Secrist, J.A., III; Weitman, S. Discovery and development of clofarabine: A nucleoside analogue for treating cancer. Nat. Rev. Drug Discov. 2006, 5, 855–863.
  • Parker, W.B.; Shaddix, S.C.; Chang, C.H.; White, E.L.; Rose, L.M.; Brockman, R.W.; Shortnacy, A.T.; Montgomery, J.A.; Secrist, J.A., III; Bennett, L.L., Jr. Effects of 2-chloro-9-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl)adenine on K562 cellular metabolism and the inhibition of human ribonucleotide reductase and DNA polymerases by its 5’-triphosphate. Cancer Res. 1991, 51, 2386–2394.
  • Leoni, L.M.; Chao, Q.; Cottam, H.B.; Genini, D.; Rosenbach, M.; Carrera, C.J.; Budihardjo, I.; Wang, X.; Carson, D.A. Induction of an apoptotic program in cell-free extracts by 2-chloro-2’-deoxyadenosine 5’-triphosphate and cytochrome c. Proc. Natl. Acad. Sci. U S A. 1998, 95, 9567–9571.
  • Arner, E.S.; Eriksson, S. Mammalian deoxyribonucleoside kinases. Pharmacol. Ther. 1995, 67, 155–186.
  • Lotfi, K.; Mansson, E.; Peterson, C.; Eriksson, S.; Albertioni, F. Low level of mitochondrial deoxyguanosine kinase is the dominant factor in acquired resistance to 9-beta-D-arabinofuranosylguanine cytotoxicity. Biochem. Biophys. Res. Commun. 2002, 293, 1489–1496.
  • Bergman, A.M.; Pinedo, H.M.; Peters, G.J. Determinants of resistance to 2’,2’-difluorodeoxycytidine (gemcitabine). Drug. Resist. Updat. 2002, 5, 19–33.
  • Wang, L.; Karlsson, A.; Arner, E.S.; Eriksson, S. Substrate specificity of mitochondrial 2’-deoxyguanosine kinase. Efficient phosphorylation of 2-chlorodeoxyadenosine. J. Biol. Chem. 1993, 268, 22847–22852.
  • Rosania, G.R. Mitochondria give cells a tan. Chem. Biol. 2005, 12, 412–413.
  • Saada-Reisch, A. Deoxyribonucleoside kinases in mitochondrial DNA depletion. Nucleos. Nucleot. Nucl. Acids. 2004, 23, 1205–1215.
  • Cheson, B.D.; Vena, D.A.; Foss, F.M.; Sorensen, J.M. Neurotoxicity of purine analogs: A review. J. Clin. Oncol. 1994, 12, 2216–2228.
  • Lindemalm, S.; Liliemark, J.; Larsson, B.S.; Albertioni, F. Distribution of 2-chloro-2’-deoxyadenosine, 2-chloro-2’-arabino-fluoro-2’-deoxyadenosine, fludarabine and cytarabine in mice: A whole-body autoradiography study. Med. Oncol. 1999, 16, 239–244.
  • Chandra, J.; Mansson, E.; Gogvadze, V.; Kaufmann, S.H.; Albertioni, F.; Orrenius, S. Resistance of leukemic cells to 2-chlorodeoxyadenosine is due to a lack of calcium-dependent cytochrome c release. Blood. 2002, 99, 655–663.
  • Fyrberg, A.; Mirzaee, S.; Lotfi, K. Cell cycle dependent regulation of deoxycytidine kinase, deoxyguanosine kinase, and cytosolic 5’-nucleotidase I activity in MOLT-4 cells. Nucleos. Nucleot. Nucl. Acids. 2006, 25, 1201–1204.
  • Fyrberg, A.; Albertioni, F.; Lotfi, K. Cell cycle effect on the activity of deoxynucleoside analogue metabolising enzymes. Biochem. Biophys. Res. Commun. 2007, 357, 847–853.
  • Durham, J.P.; Ives, D.H. Deoxycytidine kinase. I. Distribution in normal and neoplastic tissues and interrelationships of deoxycytidine and 1-beta-D-arabinofuranosylcytosine phosphorylation. Mol. Pharmacol. 1969, 5, 358–375.
  • Mirzaee, S.; Eriksson, S.; Albertioni, F. Differences in cytosolic and mitochondrial 5’-nucleotidase and deoxynucleoside kinase activities in Sprague-Dawley rat and CD-1 mouse tissues: Implication for the toxicity of nucleoside analogs in animal models. Toxicology. 2010, 267, 159–164.
  • Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275.
  • Hatzis, P.; Al-Madhoon, A.S.; Jullig, M.; Petrakis, T.G.; Eriksson, S.; Talianidis, I. The intracellular localization of deoxycytidine kinase. J. Biol. Chem. 1998, 273, 30239–30243.
  • Jullig, M.; Eriksson, S. Mitochondrial and submitochondrial localization of human deoxyguanosine kinase. Eur. J. Biochem. 2000, 267, 5466–5472.
  • Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods. 1983, 65, 55–63.
  • Fyrberg, A.; Lotfi, K. Optimization and evaluation of electroporation delivery of siRNA in the human leukemic CEM cell line. Cytotechnology. 2010, 62, 497–507.
  • Sjoberg, A.H.; Wang, L.; Eriksson, S. Substrate specificity of human recombinant mitochondrial deoxyguanosine kinase with cytostatic and antiviral purine and pyrimidine analogs. Mol. Pharmacol. 1998, 53, 270–273.
  • Zhu, C.; Johansson, M.; Karlsson, A. Differential incorporation of 1-beta-D-arabinofuranosylcytosine and 9-beta-D-arabinofuranosylguanine into nuclear and mitochondrial DNA. FEBS Lett. 2000, 474, 129–132.
  • Mansson, E.; Flordal, E.; Liliemark, J.; Spasokoukotskaja, T.; Elford, H.; Lagercrantz, S.; Eriksson, S.; Albertioni, F. Down-regulation of deoxycytidine kinase in human leukemic cell lines resistant to cladribine and clofarabine and increased ribonucleotide reductase activity contributes to fludarabine resistance. Biochem. Pharmacol. 2003, 65, 237–247.
  • Shewach, D.S.; Reynolds, K.K.; Hertel, L. Nucleotide specificity of human deoxycytidine kinase. Mol. Pharmacol. 1992, 42, 518–524.
  • Lotfi, K.; Karlsson, K.; Fyrberg, A.; Juliusson, G.; Jonsson, V.; Peterson, C.; Eriksson, S.; Albertioni, F. The pattern of deoxycytidine- and deoxyguanosine kinase activity in relation to messenger RNA expression in blood cells from untreated patients with B-cell chronic lymphocytic leukemia. Biochem. Pharmacol. 2006, 71, 882–890.
  • Smal, C.; Vertommen, D.; Bertrand, L.; Ntamashimikiro, S.; Rider, M.H.; Van Den Neste, E.; Bontemps, F. Identification of in vivo phosphorylation sites on human deoxycytidine kinase. Role of Ser-74 in the control of enzyme activity. J. Biol. Chem. 281, 4887–4893.
  • Hengstschlager, M.; Denk, C.; Wawra, E. Cell cycle regulation of deoxycytidine kinase. Evidence for post-transcriptional control. FEBS Lett. 1993, 321, 237–240.
  • Heinemann, V.; Schulz, L.; Issels, R.D.; Plunkett, W. Gemcitabine: A modulator of intracellular nucleotide and deoxynucleotide metabolism. Semin. Oncol. 1995, 22, 11–18.
  • Plunkett, W.; Huang, P.; Xu, Y.Z.; Heinemann, V.; Grunewald, R.; Gandhi, V. Gemcitabine: Metabolism, mechanisms of action, and self-potentiation. Semin. Oncol. 1995, 22, 3–10.
  • Heinemann, V.; Hertel, L.W.; Grindey, G.B.; Plunkett, W. Comparison of the cellular pharmacokinetics and toxicity of 2’,2’-difluorodeoxycytidine and 1-beta-D-arabinofuranosylcytosine. Cancer Res. 1988, 48, 4024–4031.
  • Heinemann, V.; Xu, Y.Z.; Chubb, S.; Sen, A.; Hertel, L.W.; Grindey, G.B.; Plunkett, W. Cellular elimination of 2’,2’-difluorodeoxycytidine 5’-triphosphate: A mechanism of self-potentiation. Cancer Res. 1992, 52, 533–539.
  • Kawasaki, H.; Carrera, C.J.; Carson, D.A. Quantitative immunoassay of human deoxycytidine kinase in malignant cells. Anal. Biochem. 1992, 207, 193–196.
  • Queirolo, P.; Acquati, M. Targeted therapies in melanoma. Cancer Treat. Rev. 2006, 32, 524–531.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.