231
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis and Substrate Evaluation of (E)-5-[(3-Selenophene-2-Carboxamido)Prop-1-en-1-yl]-Uridine-5′-O-Triphosphate for RNA Polymerase

, , &
Pages 866-876 | Received 22 Dec 2014, Accepted 07 Aug 2015, Published online: 02 Oct 2015

REFERENCES

  • Hermann, T.; Patel, D.J. RNA bulges as architectural and recognition motifs. Structure 2000, 8, R47–R54. Leulliot, N.; Varani, G. Current topics in RNA−protein recognition:  control of specificity and biological function through induced fit and conformational capture. Biochemistry 2001, 40, 7947–7956. . (c) Al-Hasani, H.M.; Walter, N.G. RNA dynamics: it is about time. Curr. Opin. Struct. Biol. 2008, 18, 321–329. . (d) Aitken, C.E.; Petrov, A.; Puglisi, J.D. Single ribosome dynamics and the mechanism of translation. Ann. Rev. Biophys. 2010, 39, 491–513.
  • Ranasinghe, R.T.; Brown, T. Fluorescence based strategies for genetic analysis. Chem. Commun. 2005, 5487–5502. (b) Asseline, U. Development and applications of fluorescent oligonucleotides. Curr. Org. Chem. 2006, 10, 491–518.
  • Marti, A.A.; Jockusch, S.; Stevens, N.; Ju, J.; Turro, N.J. Fluorescent hybridization probes for sensitive and selective DNA and RNA detection. Acc. Chem. Res. 2007, 40, 402–409. (d) Bardaro, M.F. Jr.; Varani, G. Examining the relationship between RNA function and motion using nuclear magnetic resonance. WIREs RNA, 2012, 3, 122–132. . (e) Nguyen, P.; Qin, P.Z. RNA dynamics: perspectives from spin labels. WIREs RNA, 2012, 3, 62–72.
  • Holbrook, S.R. Structural principals from large RNAs. Ann. Rev. Biophys. 2008, 37, 445–464. (b) Serganov, A.; Patel, D.J. Molecular recognition and function of riboswitches. Curr. Opin. Struct. Biol. 2012, 22, 279–286.
  • Ennifar, E.; Carpentier, P.; Ferrer, J.-L.; Walter, P.; Dumas, P. X-ray-induced debromination of nucleic acids at the Br K absorption edge and implications for MAD phasing. Acta Crystallogr. 2002, D58, 1262–1268. (b) Dibrov, S.; Mclean, J.; Hermann, T. Structure of an RNA dimer of a regulatory element from human thymidylate synthase mRNA. Acta Crystallogr. 2011, D67, 97–104.
  • Egli, M.; Pallan, P.S. Insights from crystallographic studies into the structural and pairing properties of nucleic acid analogs and chemically modified DNA and RNA oligonucleotides. Ann. Rev. Biophys. Biomol. Struct. 2007, 36, 281–305. (b) Sheng, J.; Huang, Z. Selenium derivatization of nucleic acids for X-ray crystal-structure and function studies. Chem. Biodivers. 2010, 7, 753–785.
  • Du, Q.; Carrasco, N.; Teplova, M.; Wilds, C.J.; Egli, M.; Huang, Z. Internal derivatization of oligonucleotides with selenium for X-ray crystallography using MAD. J. Am. Chem. Soc. 2002, 124, 24–25. (b) Wilds, C.J.; Pattenayek, R.; Pan, C.; Wawrzak, Z.; Egli, M. Selenium-assisted nucleic acid crystallography:  use of phosphoroselenoates for MAD phasing of a DNA structure. J. Am. Chem. Soc. 2002, 124, 14910–14916. . (c) Teplova, M.; Wilds, C.J.; Wawrzak, Z.; Tereshko, V.; Du, Q.; Carrasco, N.; Huang, Z.; Egli, M. Covalent incorporation of selenium into oligonucleotides for X-ray crystal structure determination via MAD: Proof of principle. Biochimie 2002, 84, 849–858.
  • Salon, J.; Gan, J.; Abdur, R.; Liu, H.; Huang, Z. Synthesis of 6-Se-guanosine RNAs for structural study. Org. Lett. 2013, 15, 3934–3937. (b) Hassan, A.E.A.; Sheng, J.; Jiang, J.; Zhang, W.; Huang, Z. Synthesis and crystallographic analysis of 5-Se-thymidine DNAs. Org. Lett. 2009, 11, 2503–2506. . (c) Sheng, J.; Jiang, J.; Salon, J.; Huang, Z. Synthesis of a 2′-Se-thymidine phosphoramidite and its incorporation into oligonucleotides for crystal structure study. Org. Lett. 2007, 9, 749–752. . (d) Salon, J.; Chen, G.; Portilla, Y.; Germann, M.W.; Huang, Z. Synthesis of a 2’-Se-uridine phosphoramidite and its incorporation into oligonucleotides for structural study. Org. Lett. 2005, 7, 5645–5648. . (e) Buzin, Y.; Carrasco, N.; Huang, Z. Synthesis of selenium-derivatized cytidine and oligonucleotides for X-ray crystallography using MAD. Org. Lett. 2004, 6, 1099–1102.
  • Serganov, A.; Keiper, S.; Malinina, L.; Tereshko, V.; Skripkin, E.; Hobartner, C.; Polonskaia, A.; Phan, A.T.; Wombacher, R.; Micura, R.; Dauter, Z.; Jaschke, A.; Patel, D.J. Structural basis for Diels-Alder ribozyme-catalyzed carbon-carbon bond formation. Nat. Struct. Mol. Biol. 2005, 12, 218–224. (b) Freisz, S.; Lang, K.; Micura, R.; Dumas, P.; Ennifar, E. Binding of aminoglycoside antibiotics to the duplex form of the HIV-1 genomic RNA dimerization initiation site. Angew. Chem. Int. Ed. 2008, 47, 4110–4113. . (c) Salon, J.; Jiang, J.; Sheng, J.; Gerlits, O.O.; Haung, Z. Derivatization of DNAs with selenium at 6-position of guanine for function and crystal structure studies. Nucleic Acids Res. 2008, 36, 7009–7018. . (d) Olieric, V.; Rieder, U.; Lang, K.; Serganov, A.; Schulze-Briese, C.; Micura, R.; Dumas, P.; Ennifar, E. A fast selenium derivatization strategy for crystallization and phasing of RNA structures. RNA 2009, 15, 707–715. . (e) Sun, H.; Sheng, J.; Hassan, A.E.A.; Jiang, S.; Gan, J.; Huang, Z. Novel RNA base pair with higher specificity using single selenium atom. Nucleic Acids Res. 2012, 40, 5171–5179.
  • Pawar, M.G.; Nuthanakanti, A.; Srivatsan, S.G. Heavy atom containing fluorescent ribonucleoside analog probe for the fluorescence detection of RNA-ligand binding. Bioconjugate Chem. 2013, 24, 1367–1377.
  • Vaghefi, M. Nucleoside Triphosphates and their Analogues; CRC Press, Taylor and Francis Droup, Boca Raton, 2005.
  • Brown, P.O.; Botstein, D. Exploring the new world of the genome with DNA microarrays. Nature Genet. 1999, 21, 33–37. (b) Lockhart, D.J.; Winzeler, E.A. Genomics, gene expression and DNA arrays. Nature 2000, 405, 827–836.
  • Srivatsan, S.G.; Tor, Y. Fluorescent pyrimidine ribonucleotide:  synthesis, enzymatic incorporation, and utilization. J. Am. Chem. Soc. 2007, 129, 2044–2053. (b) Greco, N.J.; Tor, Y. Simple fluorescent pyrimidine analogues detect the presence of DNA abasic sites. J. Am. Chem. Soc. 2007, 127, 10784–10785.
  • Zhang, W.; Huang, Z. Synthesis of the 5′-Se-thymidine phosphoramidite and convenient labeling of DNA oligonucleotide. Org. Lett. 2011, 13, 2000–2003. (b) Sun, H.; Jiang, S.; Caton-Williams, J.; Liu, H.; Huang, Z. 2-Selenouridine triphosphate synthesis and Se-RNA transcription. RNA 2013, 19, 1309–1314.
  • Kore, A.R.; Yang, B.; Srinivasan, B. Ionic-tag-assisted synthesis of nucleoside triphosphates. Tetrahedron Lett. 2014, 55, 5088–5091. (b) Kore, A.R.; Yang, B.; Srinivasan, B. Efficient synthesis of terminal 4-methylumbelliferyl labeled 5-fluoro-2′-deoxyuridine-5′-O-tetraphosphate (Um-PPPP-FdU): a potential probe for homogenous fluorescent assay. Tetrahedron Lett. 2014, 55, 4822–4825. . (c) Kore, A.R.; Yang, B.; Srinivasan, B. Concise and efficient synthesis of 3′-O-triphosphates of 2′-deoxyadenosine and 2′-deoxycytidine. Tetrahedron Lett. 2014, 55, 1573–1576. . (d) Kore, A.R.; Yang, B.; Srinivasan, B. Concise synthesis of 5-methyl-, 5-formyl, and 5-carboxy analogues of 2′-deoxycytidine-5′-triphosphate. Tetrahedron Lett. 2013, 54, 5325–5327. . (e) Kore, A.R.; Yang, B.; Srinivasan, B. Fluorous-assisted synthesis of (E)-5-[3-Aminoallyl]-uridine-5′-triphosphate. Tetrahedron Lett. 2013, 54, 6264–6266. . (f) Kore, A.R.; Senthilvelan, A.; Srinivasan, B.; Shanmugasundaram, M. Facile protection-free one-pot synthesis of 7-deaza-2′-deoxyguanosine-5′-triphosphate – a versatile molecular biology probe. Can. J. Chem. 2013, 91, 718–720. . (g) Kore, A.R.; Srinivasan, B. Recent advances in the syntheses of nucleoside triphosphates. Curr. Org. Synth. 2013, 10, 903–934. . (h) Kore, A.R.; Senthilvelan, A.; Srinivasan, B.; Shanmugasundaram, M. Facile protection-free one-pot chemical synthesis of nucleoside-5’-tetraphosphates. Nucleosides Nucleotides Nucleic Acids 2013, 32, 411–420. . (i) Kore, A.R.; Srinivasan, B. Efficient synthesis of 3-cyanovinylcarbazole-1′-β-deoxyriboside-5′-triphosphate: a reversible photo-cross-linking probe. Tetrahedron Lett., 2012, 53, 4012–4014. . (j) Kore, A.R.; Senthilvelan, A.; Shanmugasundaram, M. Highly chemoselective palladium-catalyzed Sonogashira coupling of 5-iodouridine-5′-triphosphates with propargylamine: a new efficient method for the synthesis of 5-aminopropargyl-uridine-5′-triphosphates. Tetrahedron Lett., 2012, 53, 3070–3072. . (k) Kore, A.R.; Senthilvelan, A.; Shanmugasundaram, M. A new, facile, and protection-free one-pot chemical synthesis of 2′-deoxynucleoside-5′-tetraphosphates. Tetrahedron Lett., 2012, 53, 5868–5870.
  • Noguchi, T.; Hasegawa, M.; Tomisawa, K.; Mitsukuchi, M. Synthesis and structure–activity relationships of 5-phenylthiophenecarboxylic acid derivatives as antirheumatic agents. Bioorg. Med. Chem. 2003, 11, 4729–4742.
  • Langer, P.R.; Waldrop, A.A.; Ward, D.C. Enzymatic synthesis of biotin-labeled polynucleotides: novel nucleic acid affinity probes. Proc. Natl. Acad. Sci. U.S.A. 1981, 78, 6633–6637. (b) Schoetzau, T.; Langner, J.; Moyroud, E.; Roehl, I.; Vonhoff, S.; Klussmann, S. Aminomodified nucleobases:  functionalized nucleoside triphosphates applicable for SELEX. Bioconjug. Chem. 2003, 14, 919–926.
  • Kore, A.R.; Shanmugasundaram, M. Highly stereoselective palladium-catalyzed Heck coupling of 5-iodouridine-5′-triphosphates with allylamine: a new efficient method for the synthesis of (E)-5-aminoallyl-uridine-5′-triphosphates. Tetrahedron Lett., 2012, 53, 2530–2532.
  • Kore, A.R.; Senthilvelan, A.; Shanmugasundaram, M.; Sandoval, D.; and Pardo, A. A new efficient stereoselective method for the synthesis of (E)-5-aminoallyl-pyrimidine-5-triphosphates using palladium-catalyzed Heck reaction. Nucleosides, Nucleotides and Nucleic Acids 2015, 34, 221–228.
  • Dadova, J.; Vidlakova, P.; Pohl, R.; Havran, L.; Fojta, M.; and Hocek, M. Aqueous Heck cross-coupling preparation of acrylate-modified nucleotides and nucleoside triphosphates for polymerase synthesis of acrylate-labeled DNA. J. Org. Chem. 2013, 78, 9627–9637.
  • Vaish, N.K.; Fraley, A.W.; Szostak, J.W.; McLaughlin, L.W. Expanding the structural and functional diversity of RNA: analog uridine triphosphates as candidates for in vitro selection of nucleic acids. Nucleic Acid Res. 2000, 28, 3316–3322.
  • Pawar, M.G.; Srivatsan, S.G. Photophysical Characterization, and Enzymatic Incorporation of a Microenvironment-Sensitive Fluorescent Uridine Analog. Org. Lett. 2011, 13, 1114–1117.
  • Analysis of Cy5-labeled cRNAs and cDNAs using the Agilent 2100 Bioanalyzer and the RNA 6000 LabChip® kit.
  • Sakamoto, T.; Kondo, Y.; Uchiyama, M.; Yamanaka, H. Concise synthesis of CC-1065/duocarmycin pharmacophore using the intramolecular Heck reaction. J. Chem. Soc., Perkin Trans. 1993, 1941–1942.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.