173
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Exploring a DNA Sequence for the Three-Dimensional Structure Determination of a Silver(I)-Mediated C-C Base Pair in a DNA Duplex By 1H NMR Spectroscopy

, , , , , & show all
Pages 877-900 | Received 25 Aug 2015, Accepted 25 Aug 2015, Published online: 17 Nov 2015

REFERENCES

  • Clever, G.H.; Kaul, C.; Carell, T. DNA-metal base pairs. Angew. Chem. Int. Ed. 2007, 46, 6226–6236.
  • Clever, G.H.; Shionoya, M. Metal-base paring in DNA. Coord. Chem. Rev. 2010, 254, 2391–2402.
  • Ono, A.; Torigoe, H.; Tanaka, Y.; Okamoto, I. Binding of metal ions by pyrimidine base pairs in DNA duplexes. Chem. Soc. Rev. 2011, 40, 5855–5866.
  • Takezawa, Y.; Shionoya, M. Metal-mediated DNA base pairing: Alternatives to hydrogen-bonded Watson-Crick base pairs. Acc. Chem. Res. 2012, 45, 2066–2076.
  • Scharf, P.; Muller, J. Nucleic acids with metal-mediated base pairs and their applications. ChemPlusChem. 2013, 78, 20–34.
  • Park, K.S.; Park, H.G. Technological applications arising from the interactions of DNA bases with metal ions. Curr. Opin. Biotechnol. 2014, 28, 17–24.
  • Wagenknecht, H.-A. Reductive electron transfer and transport of excess electrons in DNA. Angew. Chem. 2003, 115, 3322–3324; Angew. Chem. Int. Ed. 2003, 42, 3204–3206.
  • Liu, X.; Lu C.-H.; Willner, I. Switchable reconfiguration of nucleic acid nanostructures by stimuli-responsive DNA machines. Acc. Chem. Res. 2014, 47, 1673–1680.
  • Wang, F.; Lu C.-H.; Willner, I. From cascaded catalytic nucleic acids to enzyme−DNA nanostructures: Controlling reactivity, sensing, logic operations, and assembly of complex structures. Chem. Rev. 2014, 114, 2881–2941.
  • Ono, A.; Togashi, H. Highly selective oligonucleotide-based sensor for mercury(II) in aqueous solutions. Angew. Chem. Int. Ed. 2004, 43, 4300–4302.
  • Ono, A.; Cao, S.; Togashi, H.; Tashiro, M.; Fujimoto, T.; Machinami, T.; Oda, S.; Miyake, Y.; Okamoto, I.; Tanaka, Y. Specific interactions between silver(I) ions and cytosine–cytosine pairs in DNA duplexes. Chem. Commun. 2008, 4825–4827.
  • Liu, X.J.; Qi, C.; Bing, T.; Cheng, X.H.; Shangguan, D. Specific mercury(II) adsorption by thymine-based sorbent. Talanta 2009, 78, 253–258.
  • Dave, N.; Chan, M.Y.; Huang, P.J.J.; Smith, B.D.; Liu, J.W. Regenerable DNA-functionalized hydrogels for ultrasensitive, instrument-free mercury(II) detection and removal in water. J. Am. Chem. Soc. 2010, 132, 12668–12673.
  • Huang, P.J.J.; Liu, J.W. Immobilization of DNA on magnetic microparticles for mercury enrichment and detection with flow cytometry. Chem. Eur. J. 2011, 17, 5004–5010.
  • Yu, Y.; Zhang, B.W.; Yu, M.; Deng, B.; Li, L.F.; Fan, C.H.; Li, J.Y. High-selective removal of ultra-low level mercury ions from aqueous solution using oligothymonucleic acid functionalized polyethylene film. Sci. China. Chem. 2012, 55, 2202–2208.
  • Wang, Y.S.; Cheng, C.C.; Chen, J.K.; Ko, F.H.; Chang, F.C. Bioinspired supramolecular fibers for mercury ion adsorption. J. Mater. Chem. A 2013, 1, 7745–7750.
  • Kuriyama, M.; Haruta, K.; Dairaku, T.; Kawamura, T.; Kikkawa, S.; Inamoto, K.; Tsukamoto, H.; Kondo, Y.; Torigoe, H.; Okamoto, I.; Ono, A.; Morita, E.H.; Tanaka, Y. Hg2+-trapping beads: Hg2+-specific recognition through thymine-Hg(II)-thymine base pairing. Chem. Pharm. Bull. 2014, 62, 709–712.
  • Torigoe, H.; Ono, A.; Kozasa, T. Mismatch base pair detection by fluorescence spectral change upon addition of metal cation toward efficient analysis of single nucleotide polymorphism. Nucleosides Nucleotides Nuclic Acids 2007, 26, 1635–1639.
  • Lin, Y.W.; Ho, H.T.; Huang, C.C.; Chang, H.T. Fluorescence detection of single nucleotide polymorphisms using a universal molecular beacon. Nucleic Acids Res. 2008, 36, e123.
  • Torigoe, H.; Miyakawa, Y.; Ono, A.; Kozasa, T. Thermodynamic properties of the specific binding between Ag+ ions and C:C mismatched base pairs in duplex DNA. Nucleosides Nucleotides Nucliec Acids 2011, 30, 149–167.
  • Tanaka, K.; Tengeiji, A.; Kato, T.; Toyama, N.; Shionoya, M. A discrete self-assembled metal array in artificial DNA. Science 2003, 299, 1212–1213.
  • Clever, G.H.; Reitmeier, S.J.; Carell, T.; Schiemann, O. Anti-ferromagnetic coupling of stacked CuII-Salen complexes in DNA. Angew. Chem. Int. Ed. 2010, 49, 4927–4929.
  • Carell, T.; Behrens, C.; Gierlich, J. Electrontransfer through DNA and metal-containing DNA. Org. Biomol. Chem. 2003, 1, 2221–2228.
  • Ito, T.; Nikaido, G.; Nishimoto, S.I. Effects of metal binding to mismatched base pairs on DNA-mediated charge transfer. J. Inorg. Biochem. 2007, 101, 1090–1093.
  • Joseph, J.; Schuster, G.B. Long-distance radical cation hopping in DNA: The effect of thymine-Hg(II)-thymine base pairs. Org. Lett. 2007, 9, 1843–1846.
  • Guo, L.Q.; Yin, N.; Chen, G.N. Photoinduced electron transfer mediated by pi-stacked thymine-Hg2+-thymine base pairs. J. Phys. Chem. C 2011, 115, 4837–4842.
  • Isobe, H.; Yamazaki, N.; Asano, A.; Fujino, T.; Nakanishi, W.; Seki, S. Electron mobility in a mercury-mediated duplex of triazole-linked DNA ((TL)DNA). Chem. Lett. 2011, 40, 318–319.
  • Kratochvilova, I.; Golan, M.; Vala, M.; Sperova, M.; Weiter, M.; Pav, O.; Sebera, J.; Rosenberg, I.; Sychrovsky, V.; Tanaka, Y.; Bickelhaupt, F.M. Theoretical and experimental study of charge transfer through DNA: Impact of mercury mediated T-Hg-T base pair. J. Phys. Chem. B 2014, 118, 5374–5381.
  • Porchetta, A.; Vallee-Belisle, A.; Plaxco, K.W.; Ricci, F. Allosterically tunable, DNA-based switches triggered by heavy metals. J. Am. Chem. Soc. 2013, 135, 13238–13241.
  • Freeman, R.; Finder, T.; Willner, I. Multiplexed analysis of Hg2+ and Ag+ ions by nucleic acid functionalized CdSe/ZnS quantum dots and their use for logic gate operations. Angw. Chem. Int. Ed. 2009, 48, 7818–7821.
  • Zhang, G.Y.; Lin, W.L.; Yang, W.Q.; Lin, Z.Y.; Guo, L.H.; Qiu, B.; Chen, G.N. Logic gates for multiplexed analysis of Hg2+ and Ag+. Analyst 2012, 137, 2687–2691.
  • Bi, S.; Ji, B.; Zhang, Z.P.; Zhu, J.J. Metal ions-triggered ligase activity for rolling circle amplification and its application in molecular logic gate operations. Chem. Sci. 2013, 4, 1858–1863.
  • Funai, T.; Nakamura, J.; Miyazaki, Y.; Kiriu, R.; Nakagawa, O.; Wada, S.; Ono, A.; Urata, H. Regulated incorporation of two different metal ions into programmed sites in a duplex by DNA polymerase catalyzed primer extension. Angw. Chem. Int. Ed. 2014, 53, 6624–6627.
  • Ono, A.; Togashi, H. Highly selective oligonucleotide-based sensor for mercury(II) in aqueous solutions. Angw. Chem. Int. Ed. 2004, 43, 4300–4302.
  • Ihara, T.; Ishii, T.; Araki, N.; Wilson, A.W.; Jyo, A. Silver ion unusually stabilizes the structure of a parallel-motif DNA triplex. J. Am. Chem. Soc. 2009, 131, 3826–3827.
  • Megger, D.A.; Muller, J. Silver(I)-mediated cytosine self-pairing is preferred over hoogsteen-type base pairs with the artificial nucleobase 1,3-dideaza-6-nitropurine. Nucleosides Nucleotides Nucleic Acids 2010, 29, 27–38.
  • Ono, T.; Yoshida, K.; Saotome, Y.; Sakabe, R.; Okamoto, I.; Ono, A. Synthesis of covalently linked parallel and antiparallel DNA duplexes containing the metal-mediated base pairs T–Hg(II)–T and C–Ag(I)–C. Chem. Commun. 2011, 47, 1542–1544.
  • Funai, T.; Miyazaki, Y.; Aotani, M.; Yamaguchi. E.; Nakagawa, O.; Wada, S.; Torigoe, H.; Ono. A.; Urata, H. AgI ion-mediated formation of a C–A mispair by DNA polymerases. Angw. Chem. Int. Ed. 2012, 51, 6464–6466.
  • Day, H.A.; Huguin, C.; Waller, Z.A.E. Silver cations fold i-motif at neutral pH. Chem. Commun. 2013, 49, 7696–7698.
  • Urata, H.; Yamaguchi, E.; Nakamura, Y.; Wada, S. Pyrimidine-pyrimidine base pairs stabilized by silver(I) ions. Chem. Commun. 2011, 47, 941–943.
  • Swasey, S.M.; Leal, L.E.; Lopez-Acevedo, O.; Pavlovich, J.; Gwinn, E.G. Silver (I) as DNA glue: Ag+-mediated guanine pairing revealed by removing Watson-Crick constraints. Sci. Rep. 2015, 5, 10163.
  • Ritchie, C.M.; Johnsen, K.R.; Kiser, J.R.; Antoku, Y.; Dickson, R.M.; Petty, J.T. Ag nanocluster formation using a cytosine oligonucleotide template. J. Phys. Chem. C 2007, 111, 175–181.
  • Urata, H.; Yamaguchi, E.; Funai, T.; Matsumura, Y.; Wada, S. Incorporation of thymine nucleotides by DNA polymerases through T–HgII–T base pairing. Angw. Chem. Int. Ed. 2010,49, 6516–6519.
  • Park, K.S.; Jung, C.; Park, H.G. ‘‘Illusionary’’ polymerase activity triggered by metal ions: Use for molecular logic-gate operations. Angw. Chem. Int. Ed. 2010, 49, 9757–9760.
  • Bi, S.; Ji, B.; Zhang, Z.P.; Zhu, J.J. Metal ions-triggered ligase activity for rolling circle amplification and its application in molecular logic gate operations. Chem. Sci. 2013, 4, 1858–1863.
  • Tanaka, Y.; Oda, S.; Yamaguchi, H.; Kondo, Y.; Kojima, C.; Ono, A. 15N-15N J-coupling across HgII: Direct observation of HgII-mediated T-T base pairs in a DNA duplex. J. Am. Chem. Soc. 2007, 129, 244–245.
  • Yamaguchi, H.; Sebera, J.; Kondo, J.; Oda, S.; Komuro, T.; Kawamura, T.; Dairaku, T.; Kondo, Y.; Okamoto, I.; Ono, A.; Burda, J.V.; Kojima, C.; Sychrovsky, V.; Tanaka, Y. The structure of metallo-DNA with consecutive thymine-HgII-thymine base pairs explains positive entropy for the metallo base pair formation. Nucleic Acids Res. 2014, 42, 4094–4099.
  • Kondo, J.; Yamada, T.; Hirose, C.; Okamoto, I.; Tanaka; Y.; Ono, A. Crystal structure of metallo DNA duplex containing consecutive Watson–Crick-like T–HgII–T base pairs. Angw. Chem. Int. Ed. 2014, 53, 1–5.
  • Voityuk, A.A. Electronic coupling mediated by stacked (thymine-Hg-thymine) base pairs. J. Phys. Chem. B 2006, 110, 21010–21013.
  • Uchiyama, T.; Miura, T.; Takeuchi, H.; Dairaku, T.; Komuro, T.; Kawamura, T.; Kondo, Y.; Benda, L.; Sychrovsky, V.; Bour, P.; Okamito, I.; Ono, A.; Yanaka, Y. Raman spectroscopic detection of the T–HgII–T base pair and the ionic characteristics of mercury. Nucleic Acids Res. 2012, 40, 5766–5774.
  • Wang, Y.; Luan, B.Q.; Yang, Z.; Zhang, X.; Ritzo, B.; Gates, K.; Gu, L.Q. Single molecule investigation of Ag+ interactions with single cytosine-, methylcytosine- and hydroxymethylcytosine–cytosine mismatches in a nanopore. Sci. Rep. 2014, 4, 5883.
  • Wang, Y.; Ritzo, B.; Gu, L.Q. Silver(I) ions modulate the stability of DNA duplexes containing cytosine, methylcytosine and hydroxymethylcytosine at different salt concentrations. RSC Adv. 2015, 5, 2655–2658.
  • Torigoe, H.; Okamoto, I.; Dairaku, T.; Tanaka, Y.; Ono, A.; Kozasa, T. Thermodynamic and structural properties of the specific binding between Ag+ ion and C:C mismatched base pair in duplex DNA to form C-Ag-C metal-mediated base pair. Biochimie 2012, 94, 2431–2440.
  • Kapinos, L.E.; Holý, A.; Günter, J.; Sigel, H. Metal ion-binding properties of 1-methyl-4-aminobenzimidazole (=9-methyl-1,3-dideazaadenine) and 1,4-dimethylbenzimidazole (=6,9-dimethyl-1,3-dideazapurine). Quantification of the steric effect of the 6-amino group on metal ion binding at the N7 site of the adenine residue. Inorg. Chem. 2001, 40, 2500–2508.
  • Arakawa, H.; Neault, J.F.; Tajmir-Riahi, H.A. Silver(I) complexes with DNA and RNA studied by Fourier transform infrared spectroscopy and capillary electrophoresis. Biophys. J. 2001, 81, 1580–1587.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.