285
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis and cytotoxic activity of novel acyclic nucleoside analogues with functionality in click chemistry

, &
Pages 53-66 | Received 12 Feb 2017, Accepted 11 Dec 2017, Published online: 16 Jan 2018

References

  • Peyrottes, S.; Vasseur, J.J.; Imbach, J.L.; Rayner, B. Oligodeoxynucleoside phosphoramidates (P-NH2): Synthesis and thermal stability of duplexes with DNA and RNA targets. Nucleic Acids Res. 1996, 24, 1841–1848.
  • Agrawal, S.; Goodchild, J. Oligodeoxynucleoside methylphosphonates: synthesis and enzymic degradation. Tetrahedron Lett. 1987, 28, 3539–3542.
  • Eckstein, F. Phosphorothioates, essential components of therapeutic oligonucleotides. Nucleic Acid Ther. 2014, 24, 374–87.
  • Elmén, J.; Thonberg, H.; Ljungberg, K.; Frieden, M.; Westergaard, M.; Xu, Y.; Wahren, B.; Liang, Z.; Ørum, H.; Koch, T.; Wahlestedt, C. Locked nucleic acid (LNA) mediated improvements in siRNA stability and functionality. Nucleic Acids Res. 2005, 33, 439–47.
  • Pasternak, A.; Wengel, J. Thermodynamics of RNA duplexes modified with unlocked nucleic acid nucleotides. Nucleic Acids Res. 2010, 38, 6697–6706.
  • Nielsen, P.E.; Egholm, M.; Buchardt, O. Peptide nucleic acid (PNA). A DNA mimic with a peptide backbone. Bioconjug. Chem. 1994, 5, 3–7.
  • Pellestor, F.; Paulasova, P. The peptide nucleic acids (PNAs), powerful tools for molecular genetics and cytogenetics. Eur. J. Hum. Genet. 2004, 12, 694–700.
  • Kolb, H.C.; Finn, M.G.; Sharpless, K.B.; Chemistry, C. Diverse Chemical Function from a Few Good Reactions. Angew. Chemie – Int. Ed. 2001, 40, 2004–2021.
  • Devi, G.; Ganesh, K.N. 1,4-linked 1,2,3-Triazole des-peptidic analogues of PNA (TzNA): Synthesis of TzNA oligomers by "click" reaction on solid phase and stabilization of derived triplexes with DNA. Artif. DNA. PNA XNA. 2010, 1, 68–75.
  • Kappe, C.O.; Van der Eycken, E. Click chemistry under non-classical reaction conditions. Chem. Soc. Rev. 2010, 39, 1280–1290.
  • Lucas, R.; Neto, V.; Hadj Bouazza, A.; Zerrouki, R.; Granet, R.; Krausz, P.; Champavier, Y. Microwave-assisted synthesis of a triazole-linked 3′–5′ dithymidine using click chemistry. 2008.
  • Isobe, H.; Fujino, T.; Yamazaki, N.; Guillot-Nieckowski, M.; Nakamura, E. Triazole-linked analogue of deoxyribonucleic acid (TLDNA): Design, synthesis, and double-strand formation with natural DNA. Org. Lett. 2008, 10, 3729–3732.
  • Varizhuk, A.; Chizhov, A.; Florentiev, V. Synthesis and hybridization data of oligonucleotide analogs with triazole internucleotide linkages, potential antiviral and antitumor agents. Bioorg. Chem. 2011, 39, 127–131.
  • Elion, G.B. Acyclovir: discovery, mechanism of action, and selectivity. J. Med. Virol. 1993, Suppl 1, 2–6.
  • Yao, J.; Zhang, Y.; Ramishetti, S.; Wang, Y.; Huang, L. Turning an antiviral into an anticancer drug: Nanoparticle delivery of acyclovir monophosphate. J. Control. Release. 2013, 170, 414–420.
  • De Clercq, E. In search of a selective antiviral chemotherapy. Clin. Microbiol. Rev. 1997, 10, 674–693.
  • Wagner, C.R.; Ballato, G.; 0 Akanni, A.; Mclntee, E.J.; Larson, R.S.; Chang, S.-L.; Abul-Hajj, Y.J. Potent Growth Inhibitory Activity of Zidovudine on Cultured Human Breast Cancer Cells and Rat Mammary Tumors'. 1997, 2341–2345.
  • Celewicz, L.; Jóźwiak, A.; Ruszkowski, P.; Laskowska, H.; Olejnik, A.; Czarnecka, A.; Hoffmann, M.; Hladoń, B. Synthesis and anticancer activity of 5′-chloromethylphosphonates of 3′-azido-3′-deoxythymidine (AZT). Bioorganic Med. Chem. 2011.
  • Elwell, L.P.; Ferone, R.; Freeman, G.A.; Fyfe, Ja.; Hill, Ja.; Ray, P.H.; Richards, Ca.; Singer, S.C.; Knick, V.B.; Rideout, J.L.; Zimmerman, T.P. Antibacterial activity and mechanism of action of 3′-azido-3′-deoxythymidine (BW A509U), Antimicrob. Agents Chemother. 1987, 31, 274–280.
  • Turk, G.; Moroni, G.; Pampuro, S.; Brión, M.C.; Salomón, H. Antiretroviral activity and cytotoxicity of novel zidovudine (AZT) derivatives and the relation to their chemical structure. Int. J. Antimicrob. Agents. 2002, 20, 282–288.
  • Seela, F.; Sirivolu, V.R. Nucleosides and oligonucleotides with diynyl side chains: the huisgen-sharpless cycloaddition “click reaction” performed on DNA and their constituents. Nucleosides. Nucleotides Nucleic Acids. 2007, 26, 597–601.
  • Seela, F.; Sirivolu, V.R. DNA Containing Side Chains with Terminal Triple Bonds: Base-Pair Stability and Functionalization of Alkynylated Pyrimidines and 7-Deazapurines. Chem. Biodivers. 2006, 3, 509–514.
  • Kosiova, I.; Kovackova, S.; Kois, P. Synthesis of coumarin-nucleoside conjugates via Huisgen 1,3-dipolar cycloaddition. Tetrahedron. 2007, 63, 312–320.
  • Jin, P.-Y.; Jin, P.; Ruan, Y.-A.; Ju, Y.; Zhao, Y.-F. Synthesis of Some Novel 1,2,3-Triazole-Fused Oligonucleoside and Oligosaccharide Analogues. Synlett. 2007, 2007, 3003–3006.
  • Danel, K.; Larsen, L.M.; Pedersen, E.B.; Sanna, G.; La Colla, P.; Loddo, R. Synthesis and antiviral activity of new dimeric inhibitors against HIV-1. Bioorg. Med. Chem. 2008, 16, 511–517.
  • Jordheim, L.P.; Durantel, D.; Zoulim, F.; Dumontet, C. Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat. Rev. Drug Discov. 2013, 12, 447–464.
  • Amblard, F.; Cho, J.H.; Schinazi, R.F. Cu(I)-Catalyzed Huisgen Azide- Alkyne 1,3-Dipolar Cycloaddition Reaction in Nucleoside, Nucleotide, and Oligonucleotide Chemistry, Chem. Rev. 2009, 109, 4207–4220.
  • Kislukhin, A.A.; Hong, V.P.; Breitenkamp, K.E.; Finn, M.G. Relative performance of alkynes in copper-catalyzed azide-alkyne cycloaddition. Bioconjug. Chem. 2013, 24, 684–9.
  • Liang, L.; Astruc, D. The copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) “click” reaction and its applications. An overview, Coord. Chem. Rev. 2011, 255, 2933–2945.
  • Cassel, S.; Debaig, C.; Benvegnu, T.; Chaimbault, P.; Lafosse, M.; Plusquellec, D.; Rollin, P. Original Synthesis of Linear, Branched and Cyclic Oligoglycerol Standards. European J. Org. Chem. 2001, 2001, 875–896.
  • Vrbovská, S.; Holý, A.; Pohl, R.; Masojídková, M. Bifunctional Acyclic Nucleoside Phosphonates. 1. Symmetrical 1,3-Bis[(phosphonomethoxy)propan-2-yl] Derivatives of Purines and Pyrimidines. Collect. Czechoslov. Chem. Commun. 2006, 71, 543–566.
  • Gonzalez-Arellano, C.; De, S.; Luque, R. Selective glycerol transformations to high value-added products catalysed by aluminosilicate-supported iron oxide nanoparticles. Catal. Sci. Technol. 2014, 4, 4242–4249.
  • Spassova, M.; Dvořáková, H.; Holý, A.; Buděšínský, M.; Masojídková, M. Synthesis of N-(3-Azido-2-hydroxypropyl), N-(3-Phthalimido-2-hydroxypropyl) and N-(3-Amino-2-hydroxypropyl) Derivatives of Heterocyclic Bases. Collect. Czechoslov. Chem. Commun. 1994, 59, 1153–1174.
  • Merino, P. Chemical synthesis of nucleoside analogues. Wiley, 2013.
  • Kappe, C.O.; Dallinger, D.; Murphree, S. Practical microwave synthesis for organic chemists: strategies, instruments, and protocols. Wiley-VCH, 2009.
  • Gładysz, M.; Nowak-Karnowska, J.; Pasternak, A.; Milecki, J. Synthesis and hybridization properties of oligonucleotide analogues with novel acyclic triazole internucleotide linkages. Bioorg. Chem. 2017, 72, 161–167.
  • Lodish, H.; Berk, A.; Zipursky, S.L.; Matsudaira, P.; Baltimore, D.; Darnell, J. Molecular Cell Biology. 2000.
  • Armarego, W.L.F.; Chai, C.L.L. Purification of laboratory chemicals. Elsevier/BH, 2009.
  • Lutje Spelberg, J.H.; Tang, L.; Kellogg, R.M.; Janssen, D.B. Enzymatic dynamic kinetic resolution of epihalohydrins. Tetrahedron: Asymmetry. 2004, 15, 1095–1102.
  • Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.T.; Bokesch, H.; Kenney, S.; Boyd, M.R. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst. 1990, 82, 1107–12. http://www.ncbi.nlm.nih.gov/pubmed/2359136 (accessed July 15, 2016).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.