418
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

A convenient solid phase approach to obtain lipophilic 5′-phosphoramidate derivatives of DNA and RNA oligonucleotides

, , ORCID Icon & ORCID Icon
Pages 102-111 | Received 04 Aug 2017, Accepted 20 Dec 2017, Published online: 09 Feb 2018

References

  • Sridharan, K.; Gogtay, N. J. Therapeutic nucleic acids: current clinical status. Br J Clin Pharmacol. 2016, 82, 659–672.
  • Stein, C. A.; Castanotto, D. FDA-approved oligonucleotide therapies in 2017. Mol Ther. 2017, 25, 1069–1075.
  • Draghici, B.; Ilies, M. A. Synthetic nucleic acid delivery systems: present and perspectives. J Med Chem. 2015, 58, 4091–4130.
  • Juliano, R. L. The delivery of therapeutic oligonucleotides. Nucleic Acids Res. 2016, 44, 6518–6548.
  • Cho, Y. W.; Kim, J-D.; Park, K. Polycation gene delivery systems: escape from endosomes to cytosol. J Pharm Pharmacol. 2003, 55, 721–734.
  • Lv, H.; Zhang, S.; Wang, B.; Cui, S.; Yan, J. Toxicity of cationic lipids and cationic polymers in gene delivery. J Control Release. 2006, 114, 100–109.
  • Hunter, A. Molecular hurdles in polyfectin design and mechanistic background to polycation induced cytotoxicity. Adv Drug Deliv Rev. 2006, 58, 1523–1531.
  • West, K.; Otto, S. Reversible covalent chemistry in drug delivery. Curr Drug Discov Technol. 2005, 2, 123–160.
  • De Haes, W.; van Mol, G.; Merlin, C.; De Smedt, S. C.; Vanham, G.; Rejman, J. Internalization of mRNA lipoplexes by dendritic cells. Mol Pharm. 2012, 9, 2942–2949.
  • Jeong, J. H.; Kim, S. W.; Park, T. G. Novel intracellular delivery system of antisense oligonucleotide by self-assembled hybrid micelles composed of DNA/PEG conjugate and cationic fusogenic peptide. Bioconjug Chem. 2003, 14, 473–479.
  • Oishi, M.; Nagatsugi, F.; Sasaki, S.; Nagasaki, Y.; Kataoka, K. Smart polyion complex micelles for targeted intracellular delivery of PEGylated antisense oligonucleotides containing acid-labile linkages. ChemBioChem. 2005, 6, 718–725.
  • Choy, C. J.; Ley, C. R.; Davis, A. L.; Backer, B. S.; Geruntho, J. J.; Clowers, B. H.; Berkman, C. E. Second-Generation Tunable pH-Sensitive Phosphoramidate-Based Linkers for Controlled Release. Bioconjug Chem. 2016, 27, 2206–2213.
  • Choy, C. J.; Geruntho, J. J.; Davis, A. L.; Berkman, C. E. Tunable pH-Sensitive Linker for Controlled Release. Bioconjug Chem. 2016, 27, 824–830.
  • McGuigan, C.; Thiery, J-C.; Daverio, F.; Jiang, W. G.; Davies, G.; Mason, M. Anti-cancer ProTides: tuning the activity of BVDU phosphoramidates related to thymectacin. Bioorg Med Chem. 2005, 13, 3219–3227.
  • Lewandowska, M.; Ruszkowski, P.; Baraniak, D.; Czarnecka, A.; Kleczewska, N.; Celewicz, L. Synthesis of 3'-azido-2',3'-dideoxy-5-fluorouridine phosphoramidates and evaluation of their anticancer activity. Eur J Med Chem. 2013, 67, 188–195.
  • Wreesmann, C. T.; Fidder, A.; van der Marel, G. A.; van Boom, J. H. Synthesis of short RNA fragments by the benzotriazolyl phosphotriester approach. Nucleic Acids Res. 1983, 11, 8389–8405.
  • Bellon, L. 2000. In Current Protocols in Nucleic Acid Chemistry; John Wiley & Sons, Inc. Hoboken, NJ, USA, 2000, p. 3.6.1-3.6.13.
  • Krasheninina, O. A.; Novopashina, D. S.; Lomzov, A. A.; Venyaminova, A. G. 2'-Bispyrene-modified 2'-O-methyl RNA probes as useful tools for the detection of RNA: synthesis, fluorescent properties, and duplex stability. ChemBioChem. 2014, 15, 1939–1946.
  • Tanaka, T.; Sakata, T.; Fujimoto, K.; Ikehara, M. Synthesis of oligodeoxyribonucleotide with aliphatic amino or phosphate group at the 5' end by the phosphotriester method on a polystyrene support. Nucleic Acids Res. 1987, 15, 6209–6224.
  • Tanaka, T.; Yamada, Y.; Ikehara, M. Trityloxyethylamino group for the protection of phosphoryl group in oligonucleotide synthesis. Tetrahedron Lett. 1986, 27, 5641–5644.
  • Maier, M. A.; Guzaev, A. P.; Manoharan, M. Synthesis of chimeric oligonucleotides containing phosphodiester, phosphorothioate, and phosphoramidate linkages. Org Lett. 2000, 2, 1819–1822.
  • Cooke, L. A.; Frauendorf, C.; Gîlea, M. A.; Holmes, S. C.; Vyle, J. S. Solid-phase synthesis of terminal oligonucleotide–phosphoramidate conjugates. Tetrahedron Lett. 2006, 47, 719–722.
  • Froehler, B. C. Deoxynucleoside H-Phosphonate diester intermediates in the synthesis of internucleotide phosphate analogues. Tetrahedron Lett. 1986, 27, 5575–5578.
  • Jager, A.; Levy, M. J.; Hecht, S. M. Oligonucleotide N-alkylphosphoramidates: synthesis and binding to polynucleotides. Biochemistry. 1988, 27, 7237–7246.
  • Kupryushkin, M. S.; Apukhtina, V. S.; Vasilyeva, S. V.; Pyshnyi, D. V.; Stetsenko, D. A. A new simple and convenient method for preparation of oligonucleotides containing a pyrene or a cholesterol moiety. Russ Chem Bull. 2015, 64, 1678–1681.
  • Winkler, J. Oligonucleotide conjugates for therapeutic applications. Ther Deliv. 2013, 4, 791–809.
  • Abramova, T. V.; Morozova, O. B.; Silnikov, V. N.; Yurkovskaya, A. V. Synthesis of nucleotide-amino acid conjugates designed for photo-CIDNP experiments by a phosphotriester approach. Beilstein J Org Chem. 2013, 9, 2898–2909.
  • Katagiri, N.; Itakura, K.; Narang, S. A. The use of arylsulfonyltriazoles for the synthesis of oligonucleotides by the triester approach. J Am Chem Soc. 1975, 97, 7332–7337.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.