183
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Gemcitabine analogues with 4-N-alkyl chain modified with fluoromethyl ketone group

ORCID Icon, ORCID Icon & ORCID Icon
Pages 248-260 | Received 18 Feb 2018, Accepted 09 Apr 2018, Published online: 11 May 2018

References

  • Toschi, L. F. G.; Bartolini, S.; Gioia, V.; Cappuzzo, F. Role of Gemcitabine in Cancer Therapy. Future Oncol. 2005, 1, 7–17.
  • Mini, E.; Nobili, S.; Caciagli, B.; Landini, I.; Mazzei, T. Cellular Pharmacology of Gemcitabine. Ann. Oncol. 2006, 17(Suppl 5), v7–12.
  • Volker Heinemann, L. W. H.; Gerald, B. Grindey, and William Plunkett Comparison of the Cellular Pharmacokinetics and Toxicity of 2′,2′-Difluorodeoxycytidine and 1-β-D-Arabinofuranosylcytosine. Cancer Res. 1998, 48, 4024–4031.
  • Huang, P.; Chubb, S.; Hertel, L. W.; Grindey, G. B.; Plunkett, W. Action of 2′,2′-Difluorodeoxycytidine on DNA Synthesis. Cancer Res. 1991, 51, 6110–7117.
  • Veltkamp, S. A.; Pluim, D.; van Eijndhoven, M. A.; Bolijn, M. J.; Ong, F. H.; Govindarajan, R.; Unadkat, J. D.; Beijnen, J. H.; Schellens, J. H. New Insights Into the Pharmacology and Cytotoxicity of Gemcitabine and 2′,2′-Difluorodeoxyuridine. Mol. Cancer Ther. 2008, 7, 2415–2425.
  • Immordino, M. L.; Brusa, P.; Rocco, F.; Arpicco, S.; Ceruti, M.; Cattel, L. Preparation, Characterization, Cytotoxicity and Pharmacokinetics of Liposomes Containing Lipophilic Gemcitabine Prodrugs. J. Control Release 2004, 100, 331–346.
  • Couvreur, P.; Stella, B.; Reddy, L. H.; Hillaireau, H.; Dubernet, C.; Desmaële, D.; Lepêtre-Mouelhi, S.; Rocco, F.; Dereuddre-Bosquet, N.; Clayette, P.; Rosilio, V.; Marsaud, V.; Renoir, J.-M.; Cattel, L. Squalenoyl Nanomedicines as Potential Therapeutics. Nano Lett. 2006, 6, 2544–2548.
  • Bender, D. M.; Bao, J.; Dantzig, A. H.; Diseroad, W. D.; Law, K. L.; Magnus, N. A.; Peterson, J. A.; Perkins, E. J.; Pu, Y. J.; Reutzel-Edens, S. M.; Remick, D. M.; Starling, J. J.; Stephenson, G. A.; Vaid, R. K.; Zhang, D.; McCarthy, J. R. Synthesis, Crystallization, and Biological Evaluation of an Orally Active Prodrug of Gemcitabine. J. Med. Chem. 2009, 52, 6958–6961.
  • Bergman, A. M.; Adema, A. D.; Balzarini, J.; Bruheim, S.; Fichtner, I.; Noordhuis, P.; Fodstad, O.; Myhren, F.; Sandvold, M. L.; Hendriks, H. R.; Peters, G. J. Antiproliferative Activity, Mechanism of Action and Oral Antitumor Activity of CP-4126, a Fatty Acid Derivative of Gemcitabine, in in Vitro and in Vivo Tumor Models. Invest. New Drugs 2011, 29, 456–466.
  • Dasari, M.; Acharya, A. P.; Kim, D.; Lee, S.; Lee, S.; Rhea, J.; Molinaro, R.; Murthy, N. H-Gemcitabine: A New Gemcitabine Prodrug for Treating Cancer. Bioconjug. Chem. 2013, 24, 4–8.
  • Pulido, J.; Sobczak, A. J.; Balzarini, J.; Wnuk, S. F. Synthesis and Cytostatic Evaluation of 4-N-Alkanoyl and 4-N-Alkyl Gemcitabine Analogues. J. Med. Chem. 2014, 57, 191–203.
  • Wickremsinhe, E.; Bao, J.; Smith, R.; Burton, R.; Dow, S.; Perkins, E. Preclinical Absorption, Distribution, Metabolism, and Excretion of an Oral Amide Prodrug of Gemcitabine Designed to Deliver Prolonged Systemic Exposure. Pharmaceutics 2013, 5, 261–276.
  • Rejiba, S.; Reddy, L. H.; Bigand, C.; Parmentier, C.; Couvreur, P.; Hajri, A. Squalenoyl Gemcitabine Nanomedicine Overcomes the Low Efficacy of Gemcitabine Therapy in Pancreatic Cancer. Nanomedicine:NBM 2011, 7, 841–849.
  • Maiti, S.; Park, N.; Han, J. H.; Jeon, H. M.; Lee, J. H.; Bhuniya, S.; Kang, C.; Kim, J. S. Gemcitabine-Coumarin-Biotin Conjugates: a Target Specific Theranostic Anticancer Prodrug. J. Am. Chem. Soc. 2013, 135, 4567–4572.
  • Yang, Z.; Lee, J. H.; Jeon, H. M.; Han, J. H.; Park, N.; He, Y.; Lee, H.; Hong, K. S.; Kang, C.; Kim, J. S. Folate-Based Near-Infrared Fluorescent Theranostic Gemcitabine Delivery. J. Am. Chem. Soc. 2013, 135, 11657–11662.
  • Liu, L.-H.; Qiu, W.-X.; Li, B.; Zhang, C.; Sun, L.-F.; Wan, S.-S.; Rong, L.; Zhang, X.-Z. A Red Light Activatable Multifunctional Prodrug for Image-Guided Photodynamic Therapy and Cascaded Chemotherapy. Adv. Funct. Mater. 2016, 26, 6257–6269.
  • Radu, C. G.; Shu, C. J.; Nair-Gill, E.; Shelly, S. M.; Barrio, J. R.; Satyamurthy, N.; Phelps, M. E.; Witte, O. N. Molecular Imaging of Lymphoid Organs and Immune Activation by Positron Emission Tomography with a New [18F]-Labeled 2′-Deoxycytidine Analog. Nat. Med. 2008, 14, 783–788.
  • Laing, R. E.; Walter, M. A.; Campbell, D. O.; Herschman, H. R.; Satyamurthy, N.; Phelps, M. E.; Czernin, J.; Witte, O. N.; Radu, C. G. Noninvasive Prediction of Tumor Responses to Gemcitabine Using Positron Emission Tomography. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 2847–2852.
  • Lee, J. T.; Campbell, D. O.; Satyamurthy, N.; Czernin, J.; Radu, C. G. Stratification of Nucleoside Analog Chemotherapy Using 1-(2′-Deoxy-2′-18F-Fluoro-Beta-D-Arabinofuranosyl)Cytosine and 1-(2′-Deoxy-2′-18F-Fluoro-Beta-L-Arabinofuranosyl)-5-Methylcytosine PET. J. Nucl. Med. 2012, 53, 275–280.
  • Kim, W.; Le, T. M.; Wei, L.; Poddar, S.; Bazzy, J.; Wang, X.; Uong, N. T.; Abt, E. R.; Capri, J. R.; Austin, W. R.; Van Valkenburgh, J. S.; Steele, D.; Gipson, R. M.; Slavik, R.; Cabebe, A. E.; Taechariyakul, T.; Yaghoubi, S. S.; Lee, J. T.; Sadeghi, S.; Lavie, A.; Faull, K. F.; Witte, O. N.; Donahue, T. R.; Phelps, M. E.; Herschman, H. R.; Herrmann, K.; Czernin, J.; Radu, C. G. [18F]CFA as a Clinically Translatable Probe for PET Imaging of Deoxycytidine Kinase Activity. Proc. Natl. Acad. Sci. U.S.A. 2016, 113, 4027–4032.
  • Artin, E.; Wang, J.; Lohman, G. J. S.; Yokoyama, K.; Yu, G.; Griffin, R. G.; Bar, G.; Stubbe, J. Insight Into the Mechanism of Inactivation of Ribonucleotide Reductase by Gemcitabine 5′-Diphosphate in the Presence or Absence of Reductant. Biochemistry 2009, 48, 11622–11629.
  • Zipse, H.; Artin, E.; Wnuk, S.; Lohman, G. J. S.; Martino, D.; Griffin, R. G.; Kacprzak, S.; Kaupp, M.; Hoffman, B.; Bennati, M.; Stubbe, J.; Lees, N. Structure of the Nucleotide Radical Formed during Reaction of CDP/TTP with the E441Q-a2b2 of E. coli Ribonucleotide Reductase. J. Am. Chem. Soc. 2009, 131, 200–211.
  • Adhikary, A.; Kumar, A.; Rayala, R.; Hindi, R. M.; Adhikary, A.; Wnuk, S. F.; Sevilla, M. D. One-Electron Oxidation of Gemcitabine and Analogs: Mechanism of Formation of C3′ and C2′ Sugar Radicals. J. Am. Chem. Soc. 2014, 136, 15646–15653.
  • Guo, X.; Leonard, P.; Ingale, S. A.; Seela, F. Gemcitabine, Pyrrologemcitabine, and 2′-Fluoro-2′-Deoxycytidines: Synthesis, Physical Properties, and Impact of Sugar Fluorination on Silver Ion Mediated Base Pairing. Chem. Eur. J. 2017, 23, 17740–17754.
  • Hertel, L. W.; Kroin, J. S.; Misner, J. W.; Tustin, J. M. Synthesis of 2-Deoxy-2,2-Difluoro-D-Ribose 2-Deoxy-2,2-Difluoro-D-Ribofuranosyl Nucleoside. J. Org. Chem. 1988, 53, 2406–2409.
  • Brown, K.; Dixey, M.; Weymouth-Wilson, A.; Linclau, B. The Synthesis of Gemcitabine. Carbohydr. Res. 2014, 387, 59–73.
  • Synthesis of 2′-[18F]-labelled gemcitabine from the protected 2′-ketouridine or 2′-ketocytidine employing deoxodifluorination method with DAST/[18F]fluoride/K222 were attempted but gave mono 18F-labeled gemcitabine in very low radiochemical yield (0.2–0.3%) and reproducibility: Meyer, J.P. Synthetic Routes to 18F-labelled gemcitabine and related 2′-fluoronucleosides. Ph.D., Cardiff University, 2014.
  • Pulido, J. Design and Synthesis of 4-N-Alkanoyl and 4-N-Alkyl Gemcitabine Analogues Suitable for Positron Emission Tomography. Ph. D., Florida International University, 2014.
  • Lipophilic 4-N-alkyl gemcitabine analogues lack hydrolysis in the cell and are not substrate for deoxycytidine kinase (dCK); thus they have lower anticancer activity than their 4-N-acyl counterparts. On the other hand, 4-N-alkyl modified gemcitabine does not undergo deamination by deoxycytidine deaminase (DCA) into toxic derivatives (see Ref. 11). However, 4-N-alkanoyl and 4-N-alkyl analogues had comparable antiproliferative activities in the HEK293 cells, which have high levels of CDA expression (see Ref 30).
  • Gonzalez, C.; Sanchez, A.; Collins, J.; Lisova, K.; Lee, J. T.; Michael van Dam, R.; Alejandro Barbieri, M.; Ramachandran, C.; Wnuk, S. F. The 4-N-Acyl and 4-N-Alkyl Gemcitabine Analogues with Silicon-Fluoride-Acceptor: Application to 18F-Radiolabeling. Eur. J. Med. Chem. 2018, 148, 314–324. doi:10.1016/j.ejmech.2018.02.017.
  • Positron-emission tomography (PET) imaging in mice showed the biodistribution of [18F]-J to have initial concentration in the liver, kidneys and GI tract followed by increasing signal in the bone (see Ref. 30).
  • We thank you one of the reviewers for suggesting to use a solid-supported amine for the deprotection conditions, so any imine/sulfonate displacement by-product is trapped on the resin, which may ease purification during synthesis of 18F-radiolabeling tracers.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.