222
Views
5
CrossRef citations to date
0
Altmetric
Articles

Two DNA binding modes of a zinc-metronidazole and biological evaluation as a potent anti-cancer agent

, , &
Pages 449-480 | Received 26 Jul 2016, Accepted 04 Dec 2018, Published online: 28 Jan 2019

References

  • Dey, D.; Kaur, G.; Ranjani, A.; Gayathri, L.; Chakraborty, P.; Adhikary, J.; Pasan, J.; Dhanasekaran, D.; Choudhury, A. R.; Akbarsha, M. A.; et al. A Trinuclear Zinc–Schiff Base Complex: Biocatalytic Activity and Cytotoxicity. Eur. J. Inorg. Chem. 2014, 2014, 3350–3358. DOI:10.1002/ejic.201402158.
  • Prokop, R.; Kasparkova, J.; Novakova, O.; Marini, V.; Pizarro, A. M.; Ranninger, C. N.; Brabe, V. DNA Interactions of New Antitumor Platinum Complexes Withtrans Geometry Activated by a 2-metylbutylamine Orsec-butylamine Ligand. Biochem. Pharmacol 2004, 67, 1097–1109. DOI:10.1016/j.bcp.2003.11.001.
  • Prakash Chinta, J.; Dessingou, J.; Rao.; Ch, P. Synthesis, characterization and Ion Recognition Studies of Lower Rim 1,3-di{rhodamine} conjugate of Calix[4]Arene. J. Chem. Sci. 2013, 125, 1455–1461. DOI:10.1007/s12039-013-0500-0.
  • Zheng, K.; Liu, F.; Li, Y.-T.; Wu, Z.-Y.; Yan, C.-W. Synthesis and Structure Elucidation of New μ-Oxamido-bridged Dicopper(II) complexes Showing in Vitro Anticancer Activity: Evaluation of DNA/protein-binding Properties by Experiment and Molecular Docking. J. Inorg. Biochem 2016, 156, 75–88. DOI:10.1016/j.jinorgbio.2015.12.023.
  • Gopalakrishnan, M.; Senthilkumar, K.; Rajendra Rao, P.; Siva, R.; Palanisami, P. Synthesis, crystal Structure, DNA Binding and Molecular Docking Studies on New Copper(II) salicylate [Cu(DTBSA)2(2,2′-Bpy)](Dmf). Inorg. Chem. Commun 2014, 46, 54–59. DOI:10.1016/j.inoche.2014.03.043.
  • Alvarez, N.; Veiga, N.; Iglesias, S.; Torre, M. H.; Facchin, F. Synthesis, structural Characterization and DNA Interaction of New Copper-terpyridine Complexes. Polyhedron 2014, 68, 295–302. DOI:10.1016/j.poly.2013.11.002.
  • Moore, R. A.; Beckthold, B.; Bryan, L. E. Metronidazole uptake in Helicobacter pylori. Can. J. Microbiol. 1995, 41, 746–749.
  • Voogd, C. E. On the Mutagenicity of Nitroimidazoles. Mutat. Res. 1981, 86, 243–277.
  • Uzlikova, M.; Nohynkova, E. The Effect of Metronidazole on the Cell Cycle and DNA in Metronidazole-susceptible and -resistant Giardia Cell Lines. Molec. Biochem. Parasit 2014, 198, 75–81. DOI:10.1016/j.molbiopara.2015.01.005.
  • Herbst, R. A.; Bohnert, E.; Jung, E. G. Metronidazole Modifies UV-induced DNA-damage in Human Skin Fibroblasts in Vitro as Measured by the Sister Chromatid Exchange (SCE) Assay. European. J. Dermat 1993, 3, 132–136.
  • Reitz, M.; Rumpf, M.; Knitza, R. DNA Single Strand-breaks in Lymphocytes after Metronidazole Therapy. Arzneimittel-Forschung Drug Res 1991, 41, 155–156.
  • Menéndez, D.; Rojas, E.; Herrera, L. A.; López, M. C.; Sordo, M.; Elizondo, G.; Ostrosky-Wegman, P. DNA Breakage Due to Metronidazole Treatment. Mutat. Res. 2001, 478, 153–158.
  • Ré, J. L.; De Méo, M. P.; Laget, M.; Guiraud, H.; Castegnaro, M.; Vanelle, P.; Duménil, G. E. Evaluation of the Genotoxic Activity of Metronidazole and Dimetridazole in Human Lymphocytes by the Comet Assay. Mutat. Res. 1997, 375, 147–155.
  • Knight, R. C.; Skolimowski, I. M.; Edwards, D. I. The Interaction of Reduced Metronidazole with DNA. Biochem. Pharmacol. 1978, 27, 2089–2093.
  • Jiang, X.; Lin, X. Voltammetry of the Interaction of Metronidazole with DNA and Its Analytical Applications. Bioelectrochemistry 2006, 68, 206–212.
  • Athar, F.; Husain, K.; Abid, M.; Agarwal, S. M.; Coles, S. J.; Hursthouse, M. B.; Maurya, M. R.; Azam, A. Synthesis and anti-Amoebic Activity of gold(I), ruthenium(II), and copper(II) complexes of metronidazole. Chem. Biodivers. 2005, 2, 1320–1330.
  • Galvan-Tejada, N.; Bernes, S.; Castillo-Blum, S. E.; Noth, H.; Vicente, R.; Barba-Behrens, N. Supramolecular Structures of Metronidazole and Its Copper(II), Cobalt(II) and Zinc(II) coordination Compounds. J. Inorg. Biochem 2002, 91, 339–348. DOI:10.1016/S0162-0134(02)00468-3.
  • Gao, F.; Yang, P.; Xie, J.; Wang, H. Synthesis, characterization and antibacterial activity of novel Fe(III), Co(II), and Zn(II) complexes with norfloxacin. J. Inorg. Biochem. 1995, 60, 61–67.
  • d’Angelo, J.; Morgant, G.; Ghermani, N. E.; Desmaële, D.; Fraisse, B.; Bonhomme, F.; Dichi, E.; Sghaier, M.; Li, Y.; Journaux, Y.; Sorenson, J. R. J. Crystal Structures and Physico-chemical Properties of Zn(II) and Co(II) tetraaqua(3-nitro-4-hydroxybenzoato) complexes: Their Anticonvulsant Activities as Well as Related (5-nitrosalicylato)-Metal Complexes. Polyhedron 2008, 27, 537–546. DOI:10.1016/j.poly.2007.10.006.
  • Yoshikawa, Y.; Adachi, Y.; Sakurai, H. A New Type of Orally Active anti-diabetic Zn(II)-Dithiocarbamate Complex. Life Sci. 2007, 80, 759–766.
  • Tarushi, A.; Totta, X.; Raptopoulou, C. P.; Psycharis, V.; Psomas, G.; Kessissoglou, D. P. Structural Features of Mono- and Tri-nuclear Zn(ii) complexes with a Non-steroidal anti-inflammatory Drug as Ligand. Dalton Trans. 2012, 41, 7082–7091.
  • Van Tiggelen, C. J. M. Alzheimers Disease/alcohol Dementia: Association with Zinc Deficiency and Cerebral Vitamin B12 Deficiency, J. Orthomolec. Psych 1984, 13, 97–104.
  • Palmer, J. H.; Wu, J. S.; Upmacis, R. K. Coordination of Metronidazole to Cu(II): Structural Characterization of a Mononuclear Square-planar Compound. J. Mol. Struct 2015, 1091, 177–182. DOI:10.1016/j.molstruc.2015.02.057.
  • Ling, X.; Zhong, W.; Huang, Q.; Ni, K. Spectroscopic Studies on the Interaction of Pazufloxacin with Calf Thymus DNA. J. Photochem. Photobiol. B, Biol. 2008, 93, 172–176.
  • Ghosh, K. S.; Sahoo, B. K.; Jana, D.; Dasgupta, S. Studies on the Interaction of Copper Complexes of (-)- Epicatechin Gallate and (-)-Epigallocatechin Gallate with Calf Thymus DNA. J. Inorg. Biochem 2008, 102, 1711–1718. DOI:10.1016/j.jinorgbio.2008.04.008.
  • N’soukpoe-Kossi, C. N.; Ouameur, A. A.; Thomas, T.; Shirahata, A.; Thomas, T. J.; Tajmir-Riahi, H. A. DNA Interaction with Antitumor Polyamine Analogues: comparison with Biogenic Polyamines. Biomacromol 2008, 9, 2712–2718. DOI:10.1021/bm800412r.
  • La-Scaleaa, M. A.; Serranoa, S.; Gutza, I. G. Voltammetric Behaviour of Metronidazole at Mercury Electrodes. J. Braz. Chem. Soc 1999, 10, 127–135.
  • Brett, C. M. A.; Brett, A. M. O. Electrochemistry: principles, methods and Applications, Oxford University Press, New York, 1993.
  • Brown, ER.; Sandifer, JR. In Physical Methods of Chemistry, Electrochemical Methods, 2th ed., John Wiley, New York, 1986., pp. 273.
  • Ahmadi, F.; Jafari, B. Voltammetry and Spectroscopy Study of in Vitro Interaction of Fenitrothion with DNA. Electroanal 2011, 23, 675–682.
  • Aslanoglu, M.; N. Voltammetric, O. UV Absorption and Viscometric Studies of the Interaction of Norepinephrine with DNA. Turk. J. Chem 2005, 29, 477–485.
  • Ahmadi, F.; Jamali, N. Study of DNA-Deltamethrin Binding by Voltammetry, Competitive Fluorescence, Thermal Denaturation, Circular Dichroism, and Atomic Force Microscopy Techniques, DNA. Cell. Biol 2012, 31, 811–819. DOI:10.1089/dna.2011.1442.
  • Zhao, Y.; Li, Z.; Li, H.; Wang, S.; Niu, M. Synthesis, crystal Structure, DNA Binding and in Vitro Cytotoxicity Studies of Zn(II) complexes Derived from Amino-alcohol Schiff-Bases. Inorg. Chim. Acta 2018, 482, 136–143. DOI:10.1016/j.ica.2018.06.008.
  • Kosiha, A.; Parthiban, C.; Elango, K. P. Synthesis, characterization and DNA Binding/cleavage, protein Binding and Cytotoxicity Studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes of Aminonaphthoquinone. J. Photochem. Photobiol. B 2017, 168, 165–174. DOI:10.1016/j.jphotobiol.2017.02.010.
  • Koleya, M. K.; Duraipandy, D.; Syamal, M.; Babu, K.; Periakaruppan, K.; Manoharand, T.; Koleye, A. P. DNA Binding and Cytotoxicity of Some Cu(II)/Zn(II) complexes Containing a Carbohydrazone Schiff Base Ligand along with 1,10-phenanthroline as a Coligand. Inorg. Chim. Acta 2017, 466, 538–550. DOI:10.1016/j.ica.2017.06.068.
  • Ahmadi, F.; Jafari, B.; Rahimi-Nasrabadi, M.; Ghasemi, S.; Ghanbari, K. Proposed Model for in Vitro Interaction between Fenitrothion and DNA, by Using Competitive Fluorescence, 31P NMR, 1H NMR, FT-IR, CD and Molecular Modeling. Toxicology in Vitro 2013, 27, 641–650. DOI:10.1016/j.tiv.2012.11.004.
  • Hosseinzadeh, L.; Khorand, A.; Aliabadi, A. Discovery of 2-Phenyl-N-(5-(trifluoromethyl)-1,3,4-thiadiazol- 2-yl) acetamide Derivatives as Apoptosis Inducers via the Caspase Pathway with Potential Anticancer Activity, Arch. Pharm. Chem. Life Sci. 2013., 346, 12–818.
  • Hosseinzadeh, L.; Behravan, J.; Mosaffa, F.; Bahrami, G.; Bahrami, A.; Curcumin, K.,G. potentiates doxorubicin-induced apoptosis in H9c2 cardiac musclecells through generation of reactive oxygen species, Food Chem. Toxicol. 2011., 49, 1102–1109.
  • http://www.chemaxon.com (2018)
  • HyperChem (TM) Professional 8.0, Hypercube, Inc., 1115 NW 4th Street, Gainesville, Florida, 2018. http://www.chemaxon.com to http://www.chemaxon.com.
  • Frisch, M. J.; Trucks, G. F.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R. Zakrzewski, Gaussian 98, Revision A.3; Gaussian, Inc: Pittsburgh PA, 1998.
  • Pople, J. A.; Head-Gordon, M.; Fox, D. J.; Raghavachari, K.; Curtiss, L. A. Gaussian‐1 Theory: A General Procedure for Prediction of Molecular Energies. J. Chem. Phys 1989, 90, 5622–5629. DOI:10.1063/1.456415.
  • Curtiss, L. A.; Jones, C.; Trucks, G. W.; Raghavachari, K.; Pople, J. A. Gaussian‐1 Theory of Molecular Energies for Second‐row Compounds. J. Chem. Phys 1990, 93, 2537–2545. DOI:10.1063/1.458892.
  • Ahmadi, F.; Jamali, N.; Jahangard-Yekta, S.; Jafari, B.; Nouri, S.; Najafi, F.; Rahimi-Nasrabadi, M. The Experimental and Theoretical QM/MM Study of Interaction of Chloridazon Herbicide with ds-DNA. Spectrochim. Acta A: Molec. Biomolec. Spect 2011, 79, 1004–1012. DOI:10.1016/j.saa.2011.04.012.
  • Dunning TH.; Hay PJ.; Schaefer, HF. In Modern Theoretical Chemistry, 2rd ed., Plenum Press, New York, 1976., pp. 1–28.
  • Hay, P. J.; Wadt, R. Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for the Transition Metal Atoms Sc to Hg. J. Chem. Phys 1985, 82, 270–283. DOI:10.1063/1.448799.
  • Hay, P. J.; Wadt, R. Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for K to Au Including the Outermost Core Orbitals, J. Chem. Phys 1985, 82, 284–298.
  • Hay, P. J.; Wadt, R. Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for K to Au Including the Outermost Core Orbitals. J. Chem. Phys 1985, 82, 299–310. DOI:10.1063/1.448975.
  • Mulliken, R. S. Electronic Population Analysis on LCAO‐MO Molecular Wave Functions. III. Effects of Hybridization on Overlap and Gross AO Populations. J. Chem. Phys 1955, 23, 2338–2342. DOI:10.1063/1.1741876.
  • Mulliken, R. S. Electronic Population Analysis on LCAO‐MO Molecular Wave Functions. IV. Bonding and Antibonding in LCAO and Valence‐Bond Theories. J. Chem. Phys 1955, 23, 2343–2346. DOI:10.1063/1.1741877.
  • Mulliken, R. S. Electronic Population Analysis on LCAO–MO Molecular Wave Functions. J. Chem. Phys 1955, 23, 1833–1840. DOI:10.1063/1.1740588.
  • Mulliken, R. S. Electronic Population Analysis on LCAO–MO Molecular Wave Functions. II. Overlap Populations, Bond Orders, and Covalent Bond Energies. J. Chem. Phys 1955, 23, 1841–1846. DOI:10.1063/1.1740589.
  • Kielkopf, C. L.; Erkkila, K. E.; Hudson, B. P.; Barton, J. K.; Rees, D. C. Structure of a Photoactive Rhodium Complex Intercalated into DNA. Nat. Struct. Biol. 2000, 7, 117–121.
  • Ricci, C. G.; Netz, P. A. Docking Studies on DNA-ligand Interactions: building and Application of a Protocol to Identify the Binding Mode. J. Chem. Inf. Model. 2009, 49, 1925–1935. DOI:10.1021/ci9001537.
  • Morris, G. M.; Huey, R.; Lindstrom, W.; Sanner, M. F.; Belew, R. K.; Goodsell, D. S.; Olson, A. J. Autodock4 and AutoDockTools4: automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009, 30, 2785–2791. DOI:10.1002/jcc.21256.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.