246
Views
2
CrossRef citations to date
0
Altmetric
Articles

Molecular docking and spectroscopic studies on the interaction of new fifth-generation antibacterial drug ceftobiprole with calf thymus DNA

, &
Pages 732-751 | Received 18 Oct 2017, Accepted 11 Mar 2019, Published online: 14 May 2019

References

  • Scheeren, T. W. Ceftobiprole Medocaril in the Treatment of Hospital-Acquired Pneumonia. Future Microbiol 2015, 10, 1913–1928.
  • Kisgen, J.; Whitney, D. Ceftobiprole, a Broad-Spectrum Cephalosporin with Activity against Methicillin-Resistant Staphylococcus aureus (MRSA). P T 2008, 33, 631–641.
  • Pillar, C.; Aranza, M.; Shah, D.; Sahm, D. In Vitro Activity Profile of Ceftobiprole, an anti MRSA Cephalosporin, against Recent Gram-Positive and Gram-Negative Isolates of European Origin. J Antimicrob Chemother. 2008, 61, 595–602.
  • Sirajuddin, M.; Ali, S.; Badshah, A. Drug-DNA Interactions and Their Study by UV-Visible, Fluorescence Spectroscopies and Cyclic voltametry. J. Photochem. Photobiol. B, Biol. 2013, 124, 1–19. DOI:10.1016/j.jphotobiol.2013.03.013.
  • Shahabadi, N.; Moradi Fili, S.; Kheirdoosh, F. Study on the Interaction of the Drug Mesalamine with Calf Thymus DNA Using Molecular Docking and Spectroscopic Techniques. J. Photochem. Photobiol. B 2013, 12, 820–826. DOI:10.1016/j.jphotobiol.2013.08.005.
  • Sambrook, J.; Fritsche, E. F.; Maniatis, T. Molecular Cloning: A Laboratory Manual, 3rd ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, 1989.
  • Liu, G. D.; Liao, J. P.; Fang, Y. Z.; Fang, S. S.; Huang, G. L.; Sheng, R. Q.; Yu, J. Interaction of Bis(Ethylene)Tin(Bis(Salicylidene)Ethylenediamine) with DNA. Anal. Sci. 2002, 18, 391–395.
  • Lerman, L. S. Structural Considerations in the Interaction of DNA and Acridines. J. Mol. Biol. 1961, 3, 18–30.
  • Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B. 1988, 37, 785. DOI:10.1103/PhysRevB.37.785.
  • Stephens, P.; Devlin, F.; Chabalowski, C.; Frisch, M. J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994, 98, 11623–11627. DOI:10.1021/j100096a001.
  • Lee, C.; Yang Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Results Obtained with the Correlation Energy Density Functionals of Becke and Lee, Yang and Parr. Chem. Phys. Lett. 1989, 157, 200–206. DOI:10.1016/0009-2614(89)87234-3.
  • Lee, C.; Yang Feller, D. The Role of Databases in Support of Computational Chemistry Calculations. J. Comput. Chem. 1996, 17, 1571–1586. DOI:10.1002/(SICI)1096-987X(199610)17:13<1571::AID-JCC9>3.0.CO;2-P.
  • Malekghassemi, M. An Exploration of Molecular Mechanics and Quantum Chemical Methods, 2009.
  • Lee, C.; Yang Neese, F.; Wennmohs, F. ORCA (3.0. 2)-An ab initio. DFT and semiempirical SCF-MO package,(Max-Planck-Institute for Chemical Energy Conversion Stiftstr 34–36, 45470 Mulheim ad Ruhr, Germany) 2013.
  • Lee, C.; Yang Trott, O.; Olson, A. J. AutoDock Vina: improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455–461. DOI:10.1002/jcc.21334.
  • Morris, G. M.; Huey, R.; Lindstrom, W.; Sanner, M. F.; Belew, R. K.; Goodsell, D. S.; Olson, A. J. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009, 30, 2785–2791. DOI:10.1002/jcc.21256.
  • Morris, G. M.; Huey, R.; Olson, A. J. Using Auto Dock for Ligand-Receptor Docking. Curr. Protoc. Bioinf 2008, 8, unit 14.1–8.14.
  • DeLano, W. L. The PyMOL Molecular Graphics System, DeLano Scientific, San Carlos, CA, 2004. http://pymol.sourceforge.net/.
  • Koplík, R. Advanced strategies in food analysis; Ultraviolet, visible spectroscopy, Available at: https://web.vscht.cz/∼poustkaj/EN%20ASFA%20AU%20Kopl%C3%ADk%20UV_VIS_spectrometry.pdf.
  • Franz, J. E.; Dhingra, O. P. 4.25 - 1,2,4-Thiadiazoles. In Comprehensive Heterocyclic Chemistry, Katritzky, A.R., Rees, C.W., Eds.; Pergamon: Oxford, 1984, 463–511.
  • Tan, L. F.; Liu, X. H.; Chao, H.; Ji, L. N. Synthesis, DNA-Binding and Photocleavage Studies of Ruthenium (II) Complex with 2-(30-Phenoxyphenyl)Imidazo [4,5f][1,10]Phenanthroline. J Inorg Biochem. 2007, 101, 56–63. DOI:10.1016/j.jinorgbio.2006.08.006.
  • Inamdar, P. R.; Sheela, A. Spectroscopic Investigations on Partial Intercalative Binding Behaviour of Terpyridine Based Copper(II) Complexes with DNA. J. Photochem. Photobiol. 2016, 159, 133–141. DOI:10.1016/j.jphotobiol.2016.03.007.
  • Shahabadi, N.; Shiri, F. Multispectroscopic Studies on the Interaction of a Copper(II) Complex of Ibuprofen Drug with Calf Thymus DNA. Nucleosides, Nucleotides & Nucleic Acids 2016, 36(2), 83–106. DOI:10.1080/15257770.2016.1223305.
  • Barton, J. K. Coordination Complexes: Drugs and Probes for DNA Structure. Inorg. Chem. Commun. 1985, 3, 321–348. DOI:10.1080/02603598508079690.
  • Kelly, J. M.; Tossi, A. B.; McConnell, D. J.; OhUigin, C. A Study of the Interactions of Some Polypyridylruthenium(II) Complexes with DNA Using Fluorescence Spectroscopy, Topoisomerisation and Thermal Denaturation. Nucl. Acids Res. 1985, 13, 6017–6034. DOI:10.1093/nar/13.17.6017.
  • Lincoln, P.; Tuite, E.; Norden, B. Short-Circuiting the Molecular Wire: Cooperative Binding of Δ-[Ru(Phen) 2 Dppz] 2+ and Δ-[Rh(Phi) 2 Bipy] 3+ to DNA. J. Am. Chem. Soc. 1997, 119, 1454–1455. DOI:10.1021/ja9631965.
  • Subastri, A.; Ramamurthy, C. H.; Suyavaran, A.; Mareeswaran, R.; Rao, P. L.; Harikrishna, M.; Kumar, M. S.; Sujatha, V.; Thirunavukkarasu, C. Spectroscopic and Molecular Docking Studies on the Interaction of Troxerutin with DNA. Int. J. Biol. Macromol. 2015, 78, 122–129. DOI:10.1016/j.ijbiomac.2015.03.036.
  • Jangir, D. K.; Dey, S. K.; Kundu, S.; Mehrotra, R. Assessment of Amsacrine Binding with DNA Using UV–Visible, Circular Dichroism and Raman Spectroscopic Techniques. J. Photochem. Photobiol. B. 2012, 114, 38–43. DOI:10.1016/j.jphotobiol.2012.05.005.
  • Asadi, M.; Safaei, E.; Ranjbar, B.; Hasani, L. A Study on the Binding of Two Water-Soluble Tetrapyridinoporphyrazinato Copper(II) Complexes to DNA. J. Mol. Struct. 2005, 754, 116–123. DOI:10.1016/j.molstruc.2005.06.033.
  • Zhou, X.; Zhang, C.; Zhang, G.; Liao, Y. Intercalation of Daphnetin–Cu(II) Complex with Calf Thymus DNA. RSC Adv 2016, 6(7), 5408–5418. DOI:10.1039/C5RA22274E.
  • Sinha, A. P. B. Spectroscopy in Inorganic Chemistry, Academic Press, New York, 1971.
  • Kumar, C. V.; Asuncion, E. H. DNA Binding Studies and Site Selective Fluorescence Sensitization of an Anthryl Probe. J. Am. Chem. Soc. 1993, 115, 8547–8553. DOI:10.1021/ja00072a004.
  • Vega, M. C.; Garcia Saez, I.; Aymami, J.; Eritja, R.; Marel, G. A.; Boom, J. H.; Rich, A.; Coll, M. Three-Dimensional Crystal Structure of the A-Tract DNA Dodecamer d(CGCAAATTTGCG)Complexed with Theminor-Groove-Binding drugHoechst 33258. Eur. J. Biochem. 1994, 222, 721–726. DOI:10.1111/j.1432-1033.1994.tb18917.x.
  • Shi, J. H.; Lou, Y. Y.; Zhou, K. L.; Pan, D. Q. Exploration of Intermolecular Interaction of Calf Thymus DNA with Sulfosulfuron Using Multi-Spectroscopic and Molecular Docking Techniques. Spectrochimica Acta. Part A. 2018, 204, 209–216. DOI:10.1016/j.saa.2018.06.054.
  • Shi, J. H.; Zhou, K. L.; Lou, Y. Y.; Pan, D. Q. Multi-Spectroscopic and Molecular Docking Studies on the Interaction of Darunavir, a HIV Protease Inhibitor with Calf Thymus DNA. Spectrochimica Acta. Part A 2018, 193, 14–22. DOI:10.1016/j.saa.2017.11.061.
  • Zhang, Y.; Zhang, G.; Li, Y.; Hu, Y. Probing the Binding of Insecticide Permethrin to Calf Thymus DNA by Spectroscopic Techniques Merging with Chemometrics Method. J. Agric. Food Chem. 2013, 61, 2638–2642. DOI:10.1021/jf400017f.
  • Sun, Y.; Bi, S.; Song, D.; Qiao, C.; Mu, D.; Zhang, H. Study on the Interaction Mechanism between DNA and the Main Active Components in Scutellaria Baicalensis Georgi. Sens. Actuat., B. 2008, 129, 799–810. DOI:10.1016/j.snb.2007.09.082.
  • Kandagal, P. B.; Shaikh, S.; Manjunatha, D.; Seetharamappa, J.; Nagaralli, B. Spectroscopic Studies on the Binding of Bioactive Phenothiazine Compounds to Human Serum Albumin. J. Photochem. Photobiol. A. 2007, 189, 121–127. DOI:10.1016/j.jphotochem.2007.01.021.
  • Jiang, M.; Xie, M. X.; Zheng, D.; Liu, Y.; Li, X. Y.; Chen, X. Spectroscopic Studies on the Interaction of Cinnamic Acid and Its Hydroxyl Derivatives with Human Serum Albumin. J. Mol. Struct. 2004, 692, 71–80. DOI:10.1016/j.molstruc.2004.01.003.
  • Nike, D. B.; Moorty, P. N.; Priyadarsini, K. I. Nonradiative Energy Transfer from 7-Amino Coumarin Dyes to Thiazine Dyes in Methanolic Solutions. Chem. Phys. Lett. 1990, 168, 533–538. DOI:10.1016/0009-2614(90)85666-Z.
  • Shahabadi, N.; Fatahi, A. Multispectroscopic DNA-Binding Studies of a Trischelate Nickel (II) Complex Containing 4,7-Diphenyl 10-Phenanthroline Ligands. Mol. Struct 2010, 970, 90–95. DOI:10.1016/j.molstruc.2010.02.048.
  • Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.; Belew, R. K.; Olson, A. J. Automated Docking Using a Lamarckian Genetic Algorithm and an Empirical Binding Free Energy Function. J. Comput. Chem. 1998, 19, 1639–1662. DOI:10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B.
  • Perveen, F.; Qureshi, R.; Shah, A.; Ahmed, S.; Latif Ansari, F.; Kalsoom, S.; Mehboob, S. Electrochemical, Spectroscopic and Molecular Docking Studies of Anticancer Organogermalactones. Pharm. J 2011, 1, 1–3.
  • Corradini, R.; Sforza, S.; Tedeschi, T.; Marchelli, R. Chirality as a Tool in Nucleic Acid Recognition: principles and Relevance in Biotechnology and in Medicinal Chemistry. Chirality 2007, 19, 269–294. DOI:10.1002/chir.20372.
  • Abderrezak, A.; Bourassa, P.; Mandeville, J. S.; Sedaghat-Herati, R.; Tajmir- Riahi, H. A. Dendrimers Bind Antioxidant Polyphenols and Cisplatin Drug. PLoS One 2012, 7, e33102. DOI:10.1371/journal.pone.0033102.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.