358
Views
13
CrossRef citations to date
0
Altmetric
Article

Nucleoside dimers analogues with a 1,2,3-triazole linkage: conjugation of floxuridine and thymidine provides novel tools for cancer treatment. Part II

ORCID Icon, , &
Pages 807-835 | Received 25 Feb 2019, Accepted 20 Apr 2019, Published online: 08 Jun 2019

References

  • Michalska, L.; Wawrzyniak, D.; Szymańska-Michalak, A.; Barciszewski, J.; Boryski, J.; Baraniak, D. Synthesis and Biological Assay of New 2’-Deoxyuridine Dimers Containing a 1,2,3-Triazole Linker. Part I. Nucleosides, Nucleotides and Nucleic Acids 2018, 1. DOI: 10.1080/15257770.2018.1514122.
  • Agalave, S. G.; Maujan, S. R.; Pore, V. S. Click Chemistry: 1,2,3-Triazoles as Pharmacophores. Chem. Asian J. 2011, 6, 2696–2718. DOI: 10.1002/asia.201100432.
  • Massarotti, A.; Aprile, S.; Mercalli, V.; Del Grosso, E.; Grosa, G.; Sorba, G.; Tron, G. C. Are 1,4- and 1,5-Disubstituted 1,2,3-Triazoles Good Pharmacophoric Groups? ChemMedChem 2014, 9, 2497–2508. DOI: 10.1002/cmdc.201402233.
  • Lutz, J. F.; Zarafshani, Z. Efficient Construction of Therapeutics, Bioconjugates, Biomaterial and Bioactive Surfaces Using Azide-Alkyne “Cliclk” Chemistry. Adv. Drug Deliv. Rev 2008, 60, 958–970. DOI: 10.1016/j.addr.2008.02.004.
  • Senanayake, T. H.; Warren, G.; Vinogradov, S. V. Novel Anticancer Polymeric Conjugates of Activated Nucleoside Analogues. Bioconjugate Chem. 2011, 22, 1983–1993. DOI: 10.1021/bc200173e.
  • Ludwig, P. S.; Schwendener, R. A.; Schott, H. A New Laboratory Scale Synthesis for the Anticancer Drug 3-C-Ethynylcytidine. Synthesis. 2002, 2002, 2387–2392. DOI: 10.1055/s-2002-35221.
  • Schott, H.; Schott, S.; Schwendener, R. A. Synthesis and in Vitro Activities of New Anticancer Duplex Drugs Linking 2’-Deoxy-5-Fluorouridine (5-FdU) with 3’-C-Ethynylcytidine (ECyd) via a Phosphodiester Bonding. Bioorg. Med. Chem. 2009, 17, 6824–6831. DOI: 10.1016/j.bmc.2009.08.033.
  • Schott, S.; Niessner, H.; Sinnberg, T.; Venturelli, S.; Berger, A.; Ikenberg, K.; Villanueva, J.; Meier, F.; Garbe, C.; Busch, C. Cytotoxcity of New Duplex Drugs Linking 3’-C-Ethynylcytidine and 5-Fluor-2’-Deoxyuridine against Human Melanoma Cells. Int. J. Cancer. 2012, 131, 2165–2174. DOI: 10.1002/ijc.27476.
  • McGuigan, C.; Murziani, P.; Slusarczyk, M.; Gonczy, B.; Voorde, J. V.; Liekens, S.; Balzarini, J. Phosphoramidate ProTides of the Anticancer Agent FUDR Successfully Deliver the Preformed Bioactive Monophosphate in Cells and Confer Advantage over the Parent Nucleoside. J. Med. Chem. 2011, 54, 7247–7258. DOI: 10.1021/jm200815w.
  • Voorde, J. V.; Liekens, S.; McGuigan, C.; Murziani, P.; Slusarczyk, M.; Balzarini, J. The Cytostatic Activity of NUC-3073, a Phosphoramidate Prodrug of 5-Fluoro-2′-Deoxyuridine, Is Independent of Activation by Thymidine Kinase and Insensitive to Degradation by Phosphorolytic Enzymes. Biochem. Pharmacol. 2011, 82, 441–452. DOI: 10.1016/j.bcp.2011.05.024.
  • Grem, J. L. 5-Fluorouracil: forty-plus and Still Ticking. A Review of Its Preclinical and Clinical Development. Invest. New Drugs 2000, 18, 299–313. DOI: 10.1023/A:1006416410198.
  • Longley, D. B.; Harkin, D. P.; Johnston, P. G. 5-Fluorouracil: Mechanisms of Action and Clinical Strategies. Nat. Rev. Cancer 2003, 3, 330–338. DOI: 10.1038/nrc1074.
  • Langenbach, R. J.; Danenberg, P. V.; Heidelberger, C. Thymidylate Synthase: Mechanism of Inhibition by 5-Fluoro-2′-Deoxyuridylate. Biochem. Biophys. Res. Commun 1972, 48, 1565–1571. DOI: 10.1016/0006-291X(72)90892-3.
  • Lewandowska, M.; Ruszkowski, P.; Baraniak, D.; Czarnecka, A.; Kleczewska, N.; Celewicz, L. Synthesis of 3'-Azido-2',3'-Dideoxy-5-Fluorouridine Phosphoramidates and Evaluation of Their Anticancer Activity. Eur. J. Med. Chem. 2013, 67, 188.
  • Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew. Chem. Int. Ed. Engl. 2001, 40, 2004–2021.
  • Kolb, H. C.; Sharpless, K. B. The Growing Impact of Click Chemistry on Drug Discovery. Drug Discov. Today. 2003, 8, 1128–1137.
  • Meldal, M.; Tornoe, C. W. Cu-Catalyzed Azide-Alkyne Cycloaddition. Chem. Rev. 2008, 108, 2952–3015. DOI: 10.1021/cr0783479.
  • Tornoe, C. W.; Christensen, C.; Meldal, M. Peptidotriazoles on Solid Phase: [1,2,3]-Triazoles by Regiospecific Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides. J. Org. Chem. 2002, 67, 3057–3064.
  • Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, B. K. A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective Ligation of Azides and Terminal Alkynes. Angew. Chem. Int. Ed. 2002, 41, 2596–2599. DOI: 10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4.
  • Piotrowska, D. G.; Balzarini, J. Głowacka, I. E. Design, Synthesis, Antiviral and Cytostatic Evaluation of Novel Isoxazolidine Nucleotide Analogues with a 1,2,3-Triazole Linker. Eur. J. Med. Chem. 2012, 47, 501–509. DOI: 10.1002/chin.201224200.
  • Zeidler, J.; Baraniak, D.; Ostrowski, T. Bioactive Nucleoside Analogues Possessing Selected Five-Membered Azaheterocyclic Bases. Eur. J. Med. Chem. 2015, 97, 409–418. DOI: 10.1016/j.ejmech.2014.11.057.
  • Baraniak, D.; Baranowski, D.; Ruszkowski, P.; Boryski, J. 3'-O- and 5'-O-Propargyl Derivatives of 5-Fluoro-2'-Deoxyuridine: synthesis, Cytotoxic Evaluation and Conformational Analysis. J. 3'-O- and 5'-O-Propargyl Derivatives of 5-Fluoro-2'-Deoxyuridine: synthesis, Cytotoxic Evaluation and Conformational Analysis. Nucleosides Nucleotides Nucleic Acids. 2016, 35, 178–194. DOI: 10.1080/15257770.2015.1122199.
  • Horwitz, J. P.; Chua, J.; Noel, M. Nucleosides. V. The Monomesylates of 1-(2′-Deoxy-β-D-Lyxofuranosyl)Thymine. J. Org. Chem. 1964, 29, 2076–2078. DOI: 10.1021/jo01030a546.
  • Czernecki, S.; Valéry, J. M. An Efficient Synthesis of 3′-Azido-3′-Deoxythymidine (AZT). Synthesis. 1991, 1991, 239–240. DOI: 10.1055/s-1991-26434.
  • Nyilas, A.; Glemarec, C.; Chattopadhyaya, J. Synthesis of [3t'(O)→-5t'(c)]-Oxyacetamido Linked Nucleosides. Tetrahedron. 1990, 46, 2149–2164. DOI: 10.1016/S0040-4020(01)89780-5.
  • Yamaguchi, H.; Noshita, T.; Yu, T.; Kidachi, Y.; Kamiie, K.; Umetsu, H.; Ryoyama, R. Novel Effects of Glycyrrhetinic Acid on the Central Nervous System Tumorigenic Progenitor Cells: Induction of Actin Disruption and Tumor Cell-Selective Toxicity. Eur. J. Med. Chem. 2010, 45, 2943–2948. DOI: 10.1016/j.ejmech.2010.03.021.
  • Octanol–water partition coefficient logP was calculated according to http://www.molinspiration.com/services/logp.html.
  • 1H and 13C NMR chemical shifts for thymidine were taken from spectral database https://sdbs.db.aist.go.jp/sdbs/cgi-bin/landingpage/sdbsno=1178.
  • 13C NMR chemical shifts for 5-fluoro-2’-deoxyuridine were taken from spectral database https://sdbs.db.aist.go.jp/sdbs/cgi-bin/landingpage/sdbsno=19323.
  • Corredor, M.; Bujons, J.; Messeguer, À.; Alfonso, I. 15N NMR Spectroscopic and Theoretical GIAO-DFT Studies for the Unambiguous Characterization of Disubstituted 1,2,3-Triazoles. Org. Biomol. Chem. 2013, 11, 7318–7325. DOI: 10.1039/c3ob41587b.
  • Creary, X.; Anderson, A.; Brophy, C.; Crowell, F.; Funk, Z. Method for Assigning Structure of 1,2,3-Triazoles. J. Org. Chem. 2012, 77, 8756–8761. DOI: 10.1021/jo301265t.
  • de Leeuw, F. A. A. M.; Altona, C. J. Computer-Assisted Pseudorotation analysis of fivemembered Rings by Means of Proton Spin–Spin Coupling Constants: Program PSEUROT. J. Comput. Chem. 1983, 4, 428–437.
  • Altona, C.; Sundaralingam, M. Conformational Analysis of the Sugar Ring in Nucleosides and Nucleotides. a new Description Using the Concept of Pseudorotation . J. Am. Chem. Soc. 1972, 94, 8205–8212.
  • Saenger, W. Principles of Nucleic Acid Structure; Springer: New York, 1984.
  • de Leeuw, H. P. M.; Haasnoot, C. A. G.; Altona, C. J. Empirical Correlations between Conformational Parameters in β-D-Furanoside Fragments Derived from a Statistical Survey of Crystal Structures of Nucleic Acid Constituents Full Description of Nucleosidemolecular Geometries in Terms of Four Parameters. Isr. J. Chem. 1980, 20, 108–126. DOI: 10.1002/ijch.198000059.
  • Rosemeyer, H.; Tóth, G.; Golankiewicz, B.; Kazimierczuk, Z.; Bourgeois, W.; Kretschmer, U.; Muth, H.-P.; Seela, F. Syn-anti Conformational Analysis of Regular and Modified Nucleosides by 1D 1H NOE Difference Spectroscopy: A Simple Graphicalmethod Based on Conformationally Rigid Molecules. J. Org. Chem. 1990, 55, 5784–5790. DOI: 10.1021/jo00309a024.
  • Ippel, J. H.; Wijmenga, S. S.; de Jong, R.; Heus, H. A.; Hilbers, C. W.; de Vroom, E.; Van der Marel, G. A.; Van Boom, J. H. Heteronuclear Scalar Couplings in the Bases and Sugar Rings of Nucleic Acids: Their Determination and Application in Assignment and Conformational Analysis. Magn. Reson. Chem. 1996, 34, S156–S176. DOI: 10.1002/(SICI)1097-458X(199612)34:13<S156::AID-OMR68>3.0.CO;2-U.
  • Fox, J. J.; Miller, N. C. Nucleosides. XVI. Further Studies of Anhydronucleosides. J. Org. Chem. 1963, 28, 936–941. DOI: 10.1021/jo01039a014.
  • Horwitz, J. P.; Tomson, A. J.; Urbanski, J. A.; Chua, J.; Nucleosides, I. 5’-Amino-5’-Deoxyuridine and 5’-Amino-5’-Deoxythymidine. J. Org. Chem. 1962, 27, 3045–3048. DOI: 10.1021/jo01056a013.
  • Henn, T. F. G.; Garnett, M. C.; Chhabra, S. R.; Bycroft, B. W.; Baldwin, R. W. Synthesis of 2’-Deoxyuridine and 5-Fluoro-2’-Deoxyuridine Derivatives and Evaluation in Antibody Targeting Studies. J. Med. Chem. 1993, 36, 1570–1579. DOI: 10.1021/jm00063a007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.