262
Views
18
CrossRef citations to date
0
Altmetric
Articles

Molecular encapsulation of berberine by a modified β-cyclodextrin and binding of host: guest complex to G-quadruplex DNA

, &
Pages 858-873 | Received 02 Jan 2019, Accepted 09 May 2019, Published online: 31 May 2019

References

  • Lamani, D. S.; Badiger, S. G.; Reddy, K. R. V.; Naik, H. S. B. Macrocyclic Complexes: Synthesis, Characterization, Antitumor and DNA Binding Studies. Nucleos. Nucleot. Nucl. 2018, 37(9), 498–517. DOI:10.1080/15257770.2018.1498515.
  • Suganthi, S.; Sivaraj, R.; Selvakumar, P. M.; Enoch, I. V. M. V. Supramolecular Complex Binding to G-Quadruplex DNA: Berberine Encapsulated by a Planar Side-Arm Tethered β-Cyclodextrin. J. Biomol. Struct. Dyn. 2018, 1. DOI:10.1080/07391102.2018.1512420.
  • Sameena, Y.; Enoch, I. V. M. V. The Influence of β-Cyclodextrin on the Interaction of Hesperidin and Its Bismuth(III) Complex with Calf Thymus DNA. J. Lumin 2013, 138, 105–116. DOI:10.1016/j.jlumin.2012.12.003.
  • He, J. –H.; Liu, H.-Y.; Li, Z.; Tan, J. –H.; Ou, T. –M.; Huang, S.-L.; An, L. –K.; Li, D.; Gu, L. –Q.; Huang, Z. –S. New Quinazoline Derivatives for Telomeric G-Quadruplex DNA: Effects of an Added Phenyl Group on Quadruplex Binding Ability. Eur. J. Med. Chem. 2013, 63, 1–13.
  • McCallum, J. E. B.; Coyle, C. W.; Elson, R. R.; Titterington, B. A. Interactions of 4,4′-Diaminoazobenzene Derivatives with Telomeric G-Quadruplex DNA. Nuclos. Nuclot. Nucl. 2018, 37, 169–178. DOI:10.1080/15257770.2018.1442578.
  • Chen, S. –B.; Liu, G. –C.; Gu, L. –Q.; Huang, Z. –S.; Tan, J. –H. Identification of Small Molecules Capable of Regulating Conformational Changes of Telomeric G-Quadruplex. J. Mol. Struct. 2018, 1154, 1–7.
  • Sun, X.-Y.; Zhao, P.; Jin, S-f.; Liu, M.-C.; Wang, X-h.; Huang, Y-m.; Cheng, Z-f.; Yan, S.-Q.; Li, Y.-Y.; Chen, Y.-Q.; Zhong, Y.-M. Shedding Lights on the Flexible-Armed Porphyrins: Human Telomeric G4 DNA Interaction and Cell Photocytotoxicity Research. J. Photochem. Photobiol. B. 2017, 173, 606–617. DOI:10.1016/j.jphotobiol.2017.06.036.
  • Rhodes, D.; Lipps, H. J. G-Quadruplexes and Their Regulatory Roles in Biology. Nucleic Acids Res. 2015, 43, 8627–8637. DOI:10.1093/nar/gkv862.
  • Tawani, A.; Mishra, S. K.; Kumar, A. Structural Insight for the Recognition of G-Quadruplex Structure at Human c-Myc Promoter Sequence by Flavonoid Quercetin. Sci. Rep. 2017, 7, 3600.
  • Hänsel-Hertsch, R.; Antonio, M. D.; Balasubramanian, S. DNA G-Quadruplexes in the Human Genome: detection, Functions and Therapeutic Potential. Nat. Rev. Mol. Cell Biol. 2017, 18, 279–284. DOI:10.1038/nrm.2017.3.
  • Jia, B.; Li, Y.; Wang, D.; Duan, R. Study on the Interaction of β-Cyclodextrin Hydrochloride and Its Analytical Application. Plos One 2014, 9, e95498. DOI:10.1371/journal.pone.0095498.
  • Li, Z. Q.; Liao, T. C.; Dong, C.; Yang, J. W.; Chen, X. J.; Liu, L.; Luo, Y.; Liang, Y. Y.; Chen, W. H.; Zhou, C. Q. Specifically Targeting Mixed-Type Dimeric G-Quadruplexes Using Berberine Dimers. Org. Biomol. Chem. 2017, 15, 10221–10229. DOI:10.1039/C7OB02326J.
  • Han, H.; Hurley, L. H. G-Quadruplex DNA: A Potential Target for anti-Cancer Drug Design. Trends Pharmacol. Sci. 2000, 21, 136–142.
  • Capra, J. A.; Paeschke, K.; Singh, M.; Zakian, V. A. G-Quadruplex DNA Sequences Are Evolutionarily Conserved and Associated with Distinct Genomic Features in Saccharomyces cerevisiae. PloS Comput. Biol. 2010, 6, e1000861. DOI:10.1371/journal.pcbi.1000861.
  • Wang, Q.; Liu, J. –Q.; Chen, Z.; Zheng, K. –W.; Chen, C. –Y.; Hao, Y. –H.; Tan, Z. G-Quadruplex Formation at the 3′ End of Telomere DNA Inhibits Its Extension by Telomerase, Polymerase and Unwinding by Helicase. Nucleic Acids Res. 2011, 39, 6229–6237. DOI:10.1093/nar/gkr164.
  • Reed, E.; Arnal, A. A.; Neidle, S.; Vilar, R. Stabilization of G-Quadruplex DNA and Inhibition of Telomerase Activity by Square-Planar Nickel(II) Complexes. J. Am. Chem. Soc. 2006, 128, 5992–5993. DOI:10.1021/ja058509n.
  • Fedoroff, O. Y.; Salazar, M.; Han, H.; Chemeris, V. V.; Kerwin, S. M.; Hurley, L. H. NMR-Based Model of a Telomerse-Inhibiting Compound Bound to G-Quadruplex DNA. Biochemistry 1998, 37, 12367–12374. DOI:10.1021/bi981330n.
  • Yousuf, S.; Radhika, D.; Enoch, I. V. M. V.; Easwaran, M. The Influence of β-cyclodextrin encapsulation on the binding of 2'-hydroxyflavanone with calf thymus DNA. Spectrochim Acta A Mol Biomol Spectrosc. 2012, 98, 405–412. DOI:10.1016/j.saa.\2012.08.068.
  • Jiang, Z.; Zhang, Y.; Yu, Y.; Wang, Z.; Zhang, X.; Duan, X.; Wang, S. Study on Intercalations between Double-Stranded DNA and Pyrene by Single-Molecule Force Spectroscopy: Toward the Detection of Mismatch in DNA. Langmuir 2010, 26, 13773–13777. DOI:10.1021/la102647p.
  • Avirah, R. R.; Schuster, G. B. Fluorescence Quenching by Intercalation of a Pyrene Group Tethered to an N4-Modified Cytosine in Duplex DNA. Photochem. Photobiol. 2013, 89, 332–335. DOI:10.1111/j.1751-1097.2012.01243.x.
  • Kaulage, M. H.; Maji, B.; Pasadi, S.; Ali, A.; Bhattacharya, S.; Muniyappa, K. Targeting G-Quadruplex DNA Structures in the Telomere and Oncogene Promoter Regions by Benzimidazole‒Carbazole Ligands. Eur. J. Med. Chem. 2018, 148, 178–194. DOI:10.1016/j.ejmech.2018.01.091.
  • Yan, Y.; Tan, J.; Ou, T.; Huang, Z.; Gu, L. DNA G-Quadruplex Binders: A Patent Review. Expert Opin. Ther. Patents 2013, 23, 1495–1509. DOI:10.1517/13543776.2013.833187.
  • Cosconati, S.; Rizzo, A.; Trotta, R.; Pagano, B.; Iachettini, S.; De Tito, S.; Lauri, I.; Fotticchia, I.; Giustiniano, M.; Marinelli, L.; et al. Shooting for Selective Druglike G-Quadruplex Binders: Evidence for telomeric DNA Damage and Tumor Cell Death. J. Med. Chem. 2012, 55, 9785–9792. DOI:10.1021/jm301019w.
  • Enoch, I. V. M. V.; Swaminathan, M. Dual Fluorescence and Photoprototropic Characteristics of 2-Aminodiphenylsulphone–β-Cyclodextrin Inclusion Complex. J. Incl. Phenom. Macrocycl. Chem. 2005, 53, 149–154. DOI:10.1007/s10847-005-2633-3.
  • Yousuf, S.; Enoch, I. V. M. V. Binding Interactions of Naringenin and Naringin with Calf Thymus DNA and the Role of β-Cyclodextrin in the Binding. AAPS Pharm. Sci. Tech. 2013, 14, 770–781. DOI:10.1208/s12249-013-9963-z.
  • Sameena, Y.; Ritty, A.; Selvakumar, P. M.; Enoch, I. V. M. V.; Subramanian, P. S.; Sun, Y. Picking out Logic Operation in a Naphthalene–β-Diketone Derivative by Using Molecular Encapsulation, Controlled Protonation, and DNA Binding. Chem. Open 2015, 4, 497–508. DOI:10.1002/open.201500034.
  • Xu, D.; Wang, X.; Fei, D.; Ding, L. Study on the Interaction between the Inclusion Complex of Hematoxylin with β-Cyclodextrin and DNA. Nucleosides Nucleotides Nucleic Acids. 2010, 29, 854–866. DOI:10.1080/15257770.2010.531858.
  • Yousuf, S.; Sudha, N.; Murugesan, G.; Enoch, I. V. M. V. Isolation of Prunin from the Fruit Shell of Bixa Orellana and the Effect of β-Cyclodextrin on its Binding with Calf Thymus DNA. Carbohydr. Res. 2013, 365, 46–51. DOI:10.1016/j.carres.2012.10.003.
  • Yousuf, S.; Enoch, I. V. M. V. Spectroscopic Investigation of Interaction of 6-Mehthoxyflavone and Its β-Cyclodextrin Inclusion Complex with Calf Thymus DNA. Chem. Pap. 2012, 66, 787–794.
  • J. R. Lakowicz. Principles of Fluorescence Spectroscopy, 3rd ed, Springer: USA, 2006.
  • Yousuf, S.; Enoch, I. V. M. V.; Paulraj, M. S.; Dhanaraj, P. Chromenone-Conjugated Magnetic Iron Oxide Nanoparticles. Toward Conveyable DNA Binders. Colloids Surf. B. 2015, 135, 448–457. DOI:10.1016/j.colsurfb.2015.07.049.
  • Tan, Z. –J.; Chen, S. –J. Nucleic Acid Helix Stability: Effects of Salt Concentration, Cation Valence and Size, and Chain Length. Biophys J.2006, 90, 1175–1190. DOI:10.1529/biophysj.105.070904.
  • Sameena, Y.; Enoch, I. V. M. V.; Selvakumar, P. M.; Premnath, D. Loading of Chromenones on Superparamagnetic Iron Oxide-Modified Dextran Core–Shell Nanoparticles: Openness to Bind to β-Cyclodextrin and DNA. New J. Chem. 2015, 39, 7879–7888. DOI:10.1039/C5NJ00921A.
  • Wang, X. –P.; Pan, J. –H.; Yang, X. –D.; Niu, C. –D.; Zhang, Y.; Shuang, S. –M. Porphyrin Binding to DNA Investigated by Cyclodextrin Supramolecular System. Anal. Bioanal. Chem. 2002, 374, 445–450. DOI:10.1007/s00216-002-1491-8.
  • Kuntz, I. D. Jr.; Gasparro, F. P.; Johnston, M. D. Jr.; Taylor, R. P. Molecular Interactions and the Benesi-Hildebrand Equation. J. Am. Chem. Soc. 1968, 90, 4778–4781. DOI:10.1021/ja01020a004.
  • Sudha, N.; Sameena, Y.; Chandrasekaran, S.; Enoch, I. V. M. V.; Premnath, D. Alteration of the Binding Strength of Dronedarone with Bovine Serum Albumin by β-Cyclodextrin: A Spectroscopic Study. Spectrosc. Lett. 2015, 48, 112–119. DOI:10.1080/00387010.2013.858052.
  • Yu, J. S.; Wei, F. D.; Gao, W.; Zhao, C. C. Thermodynamic Study on the Effects of Beta-Cyclodextrin Inclusion with Berberine. Spectrochim Acta A. 2002, 58, 249–256. DOI:10.1016/S1386-1425(01)00536-4.
  • Liu, F.; Liang, H. L.; Xu, K. H.; Tong, L. L.; Tang, B. Supramolecular Interaction of Ethylenediamine Linked Beta-Cyclodextrin Dimer and Berberine Hydrochloride by Spectrofluorimetry and Its Analytical Application. Talanta 2007, 74, 140–145. DOI:10.1016/j.talanta.2007.05.048.
  • Raoov, M.; Mohamad, S.; Abas, M. R.; Synthesis and Characterization of β-cyclodextrin Functionalized Ionic Liquid Polymer as a Macroporous Material for the Removal of Phenols and As(V). IJMS 2013, 15, 100–119DOI:10.3390/ijms15010100.
  • Izawa, H.; Kawakami, K.; Sumita, M.; Tateyama, Y.; Hill, J. P.; Ariga, K.; β-Cyclodextrin-Crosslinked Alginate Gel for Patient-Controlled Drug Delivery Systems: Regulation of Host-Guest Interactions with Mechanical Stimuli. J. Mater. Chem. B. 2013, 1, 2155–2116DOI:10.1039/c3tb00503h.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.