140
Views
2
CrossRef citations to date
0
Altmetric
Conference Proceedings

Species-dependent patterns of incorporation of purine mononucleotides and nucleosides by lactic acid bacteria

, , , , , & show all
Pages 1440-1448 | Received 20 Nov 2019, Accepted 18 Feb 2020, Published online: 13 May 2020

References

  • Stow, R. A.; Bronk, J. R. Purine Nucleoside Transport and Metabolism in Isolated Rat Jejunum. J. Physiol. 1993, 468, 311–324. DOI: 10.1113/jphysiol.1993.sp019773.
  • Patil, S. D.; Unadkat, J. D. Sodium-Dependent Nucleoside Transport in the Human Intestinal Brush-Border Membrane. Am. J. Physiol. 1997, 272, G1314–G1320. DOI: 10.1152/ajpgi.1997.272.6.G1314.
  • Rlteel, M. W. L.; Yaof, S. Y. M.; Ng, A. M. L.; Mackeyt, J. R.; Cass, C. E.; Young, J. D. Molecular Cloning, Functional Expression and Chromosomal Localization of a cDNA Encoding a Human Na+/Nucleoside Cotransporter (hCNT2) Selective for Purine Nucleosides and Uridine. Mol. Membr. Biol. 1998, 15, 203–211. DOI: 10.3109/09687689709044322.
  • Yamamoto, S.; Inoue, K.; Murata, T.; Kamigaso, S.; Yasujima, T.; Maeda, J. Y.; Yoshida, Y.; Ohta, K. Y.; Yuasa, H. Identification and Functional Characterization of the First Nucleobase Transporter in Mammals: implication in the Species Difference in the Intestinal Absorption Mechanism of Nucleobases and Their Analogs between Higher Primates and Other Mammals. J. Biol. Chem. 2010, 285, 6522–6531. DOI: 10.1074/jbc.M109.032961.
  • Yasujima, T.; Murata, C.; Mimura, Y.; Murata, T.; Ohkubo, M.; Ohta, K.; Inoue, K.; Yuasa, H. Urate Transport Function of Rat Sodium-Dependent Nucleobase Transporter 1. Physiol. Rep. 2018, 6, e13714. DOI: 10.14814/phy2.13714.
  • Watanabe, K.; Tomioka, S.; Tanimura, K.; Oku, H.; Isoi, K. Uptake of AMP, ADP, and ATP in Escherichia coli W. Biosci. Biotechnol. Biochem. 2011, 75, 7–12. DOI: 10.1271/bbb.100063.
  • Bengis-Garber, C.; Kushner, D. J. Role of Membrane-Bound 5’-Nucleotidase in Nucleotide Uptake by the Moderate Halophile Vibrio costicola. J. Bacteriol. 1982, 149, 808–815. DOI: 10.1128/JB.149.3.808-815.1982.
  • Kilstrup, M.; Hammer, K.; Ruhdal Jensen, P.; Martinussen, J. Nucleotide Metabolism and Its Control in Lactic Acid Bacteria. FEMS Microbiol. Rev. 2005, 29, 555–590. DOI: 10.1016/j.fmrre.2005.04.006.
  • Yamada, N.; Iwamoto, C.; Kano, H.; Yamaoka, N.; Fukuuchi, T.; Kaneko, K.; Asami, Y. Evaluation of Purine Utilization by Lactobacillus gasseri Strains with Potential to Decrease the Absorption of Food-Derived Purines in the Human Intestine. Nucleosides Nucleotides Nucleic Acids 2016, 35, 670–676. DOI: 10.1080/15257770.2015.1125000.
  • Yamada, N.; Saito-Iwamoto, C.; Nakamura, M.; Soeda, M.; Chiba, Y.; Kano, H.; Asami, Y. Lactobacillus gasseri PA-3 Uses the Purines IMP, Inosine and Hypoxanthine and Reduces Their Absorption in Rats. Microorganisms 2017, 5, 10. DOI: 10.3390/microorganisms5010010.
  • Yamada, N.; Saito, C.; Murayama-Chiba, Y.; Kano, H.; Asami, Y.; Itoh, H. Lactobacillus gasseri PA-3 Utilizes the Purines GMP and Guanosine and Decreases Their Absorption in Rats. Nucleosides Nucleotides Nucleic Acids 2018, 37, 307–315. DOI: 10.1080/15257770.2018.1454949.
  • Yamada, N.; Iwamoto, C.; Nakamura, M.; Soeda, M.; Tsuboi, H.; Kano, H.; Asami, Y. Reducing Effect of Lactobacillus gasseri PA-3 on the Absorption of Food-Derived Purines. Milk Sci. 2016, 65, 25–31.
  • Yamada, N.; Saito, C.; Kano, H.; Fukuuchi, Y.; Yamaoka, N.; Kaneko, K.; Asami, Y. 2019 Lactobacillus gasseri PA-3 Incorporates Purine Mononucleotides and Utilizes Them for RNA/DNA Synthesis. Presented at the 18th Symposium on Purine and Pyrimidine Metabolism in Man, Lyon, France, June 12–14, p. 34.
  • Kurajoh, M.; Moriwaki, Y.; Koyama, H.; Tsuboi, H.; Matsuda, H.; Yamada, N.; Saito, C.; Kano, H.; Asami, Y.; Yamamoto, T. Yogurt Containing Lactobacillus gasseri PA-3 Alleviates Increases in Serum Uric Acid Concentration Induced by Purine Ingestion: A Randomized, Double-Blind, Placebo-Controlled Study. Gout Nucleic Acid Metab. 2018, 42, 31–40. DOI: 10.6032/gnam.42.31.
  • Makarova, K. S.; Koonin, E. V. Evolutionary Genomics of Lactic Acid Bacteria. J. Bacteriol. 2007, 189, 1199–1208. DOI: 10.1128/JB.01351-06.
  • Ritzel, M. W.; Ng, A. M.; Yao, S. Y.; Graham, K.; Loewen, S. K.; Smith, K. M.; Ritzel, R. G.; Mowles, D. A.; Carpenter, P.; Chen, X. Z.; et al. Molecular Identification and Characterization of Novel Human and Mouse Concentrative Na+-Nucleoside Cotransporter Proteins (hCNT3 and mCNT3) Broadly Selective for Purine and Pyrimidine Nucleosides (System Cib). J. Biol. Chem. 2001, 276, 2914–2927. DOI: 10.1074/jbc.M007746200.
  • Bolotin, A.; Wincker, P.; Mauger, S.; Jaillon, O.; Malarme, K.; Weissenbach, J.; Ehrlich, S. D.; Sorokin, A. The Complete Genome Sequence of the Lactic Acid Bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res. 2001, 11, 731–753. DOI: 10.1101/gr.GR-1697R.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.