180
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis of a novel nucleotide unit containing cytosine analog bearing phosphodiester function and formation of silver(I)-mediated DNA duplex

, &
Pages 1141-1161 | Received 29 Nov 2021, Accepted 07 Jul 2022, Published online: 22 Jul 2022

References

  • (a) Clever, G.H.; Kaul, C. and Carell, T. DNA-Metal Base Pairs. Angew. Chem. Int. Ed. Engl. 2007, 46, 6226–6236, references there in; (b) Meggers, E.; Holland, P.L.; Tolman, W.B.; Romesberg, F.E. and Schultz, P.G. A Novel Copper-Mediated DNA Base Pair. J. Am. Chem. Soc. 2000, 122, 10714–10715; (c) Atwell, S.; Meggers, E.; Spraggon, G. and Schultz, P.G. Structure of a Copper-Mediated Base Pair in DNA. J. Am. Chem. Soc. 2001, 123, 12364–12367; (d) Zimmermann, N.; Meggers, E. and Schultz, P.G. A Novel Silver(I)-Mediated DNA Base Pair. J. Am. Chem. Soc. 2002, 124, 13684–13685; (e) Tanaka, K.; Yamada, Y and Shionoya, M. Formation of Silver(I)-Mediated DNA Duplex and Triplex through an Alternative Base Pair of Pyridine Nucleobases. J. Am. Chem. Soc. 2002, 124, 8802–8803; (f) Polonius, F.-A. and Muller, J. An Artificial Base Pair, Mediated by Hydrogen Bonding and Metal-Ion Binding. Angew. Chem. Int. Ed. 2007, 46, 5602–5604; (g) Heuberger, B.D.; Shin, D. and Switzer, C. Two Watson-Crick-like Metallo Base-Pairs. Org. Lett. 2008, 10, 1091–1094; (h) Switzer, C. and Shin, D. A Pyrimidine-like Nickel(II) DNA Base Pair. Chem. Comm. 2005, 1342–1344; (i) Switzer, C.; Sinha, S.; Kim, P.H. and Heuberger, B.D. A Purine-like Nickel(II) Base Pair for DNA. Angew. Chem. Int. Ed. 2005, 44, 1529–1532; (j) Zhang, L. and Meggers, E. An Extremely Stable and Orthogonal DNA Base Pair with a Simplified Three-Carbon Backbone J. Am. Chem. Soc. 2005, 127, 74–75; (k) Tanaka, K.; Tengeiji, A.; Kato, T.; Toyama, N. and Shionoya, M. A Discrete Self-Assembled Metal Array in Artificial DNA. Science 2003, 299, 1212–1213; (l) Tanaka, K.; Tengeiji, A.; Kato, T.; Toyama, N.; Shiro, M. and Shionoya, M. Efficient Incorporation of a Copper Hydroxypyridone Base Pair in DNA. J. Am. Chem. Soc. 2002, 124, 12494–12498; (m) Takezawa, Y. and Shionoya, M. Metal-Mediated DNA Base Pairing: Alternatives to Hydrogen-Bonded Watson–Crick Base Pairs. Acc. Chem. Res. 2012, 45, 2066–2076; (n) Scharf, P. and Müller, J. Nucleic Acids with Metal-Mediated Base Pairs and Their Applications. ChemPlusChem 2013, 78, 20–34; (o) Okamoto, I.; Iwamoto, K.; Watanabe, Y.; Miyake, Y. and Ono, A. Metal-Ion Selectivity of Chemically Modified Uracil Pairs in DNA Duplexes. Angew. Chem. Int. Ed. 2009, 48, 1648–1651; (p) Okamoto, I; Ono, T.; Sameshima, R. and Ono, A. Metal Ion-Binding Properties of DNA Duplexes Containing Thiopyrimidine Base Pairs. Chem. Commun. 2012, 48, 4347–4349; (q) Funai, T.; Miyazaki, Y.; Aotani, M.; Yamaguchi, E.; Nakagawa, O.; Wada, S.-i.; Torigoe, H.; Ono, A. and Urata, H. AgI Ion Mediated Formation of a C–a Mispair by DNA Polymerases. Angew. Chem. Int. Ed. 2012, 51, 6464–6466; (r) Ono, A.; Torigoe, H.; Tanaka, Y. and Okamoto, I. Binding of Metal Ions by Pyrimidine Base Pairs in DNA Duplexes. Chem. Soc. Rev. 2011, 40, 5855–5866. DOI: 10.1002/anie.200701185.
  • (a) Petty, J.T.; Zheng, J.; Hud, N.V. and Dickson, R.M. DNA-Templated Ag Nanocluster Formation. J. Am. Chem. Soc. 2004, 126, 5207–5212; (b) Berti, L.; Alessandrini, A. and Facci, P. DNA-Templated Photoinduced Silver Deposition J. Am. Chem. Soc. 2005, 127, 11216–11217; (c) Burley, G.A.; Gierlich, J.; Mofid, M.R.; Nir, H.; Tai, S.; Eichen, Y. and Carell, T. Directed DNA Metallization J. Am. Chem. Soc. 2006, 128, 1398–1399; (d) Feldkamp, U. and Niemeyer, C.M. Rational Design of DNA Nanoarchitectures. Angew. Chem. Int. Ed. 2006, 45, 1856–1876; (e) Tanaka, K.; Clever, G.H.; Takezawa, Y.; Yamada, Y.; Kaul, C.; Shionoya, M. and Carell, T. Programmable Self-Assembly of Metal Ions inside Artificial DNA Duplexes. Nature Nanotech. 2006, 1, 190–194; (f) Nolan, E.M. and Lippard, S.L. Tools and Tactics for the Optical Detection of Mercuric Ion. Chem. Rev. 2008, 108, 3443–3480; (g) Ma, D.L.; Chan, D.S.; Man, B.Y. and Leung, C.H. Oligonucleotide-Based Luminescent Detection of Metal Ions. Chem. Asian J. 2011, 6, 986–1003; (h) Song, Y.; Wei, W. and Qu, X. Colorimetric Biosensing Using Smart Materials. Adv. Mater. 2011, 23, 4215–4236; (i) Guo, L.Q.; Yin, N. and Chen, G.N. Photoinduced Electron Transfer Mediated by π-Stacked Thymine − Hg2+−Thymine Base Pairs. J. Phys. Chem. C. 2011, 115, 4837–4842; (j) Isobe, H.; Yamazaki, N.; Asano, A.; Fujino, T.; Nakanishi, W. and Seki, S. Electron Mobility in a Mercury-Mediated Duplex of Triazole-Linked DNA (TLDNA). Chem. Lett. 2011, 40, 318–319; (k) Liu, S.; Clever, G.H.; Takezawa, Y.; Kaneko, M.; Tanaka, K.; Guo, X. and Shionoya, M. Direct Conductance Measurement of Individual metallo-DNA Duplexes within Single-Molecule Break Junctions. Angew. Chem. Int. Ed. 2011, 50, 8886–8890; (l) Mallajosyula, S.S. and Pati, S.K. Conformational Tuning of Magnetic Interactions in Metal–DNA Complexes. Angew. Chem. Int. Ed. 2009, 48, 4977–4981; (m) Clever, G.H.; Reitmeier, S.J.; Carell, T. and Schiemann, O. Antiferromagnetic Coupling of Stacked CuII–Salen Complexes in DNA. Angew. Chem. Int. Ed. 2010, 49, 4927–4929. DOI: 10.1021/ja031931o.
  • (a) Miyake, Y.; Togashi, H.; Tashiro, M.; Yamaguchi, H.; Oda, S.; Kudo, M.; Tanaka, Y.; Kondo, Y.; Sawa, R.; Fujimoto, T.; Machinami, T. and Ono, A. MercuryII-Mediated Formation of thymine-HgII-Thymine Base Pairs in DNA duplexes. J. Am. Chem. Soc. 2006, 128, 2172–2173. (b) Tanaka, Y.; Oda, S.; Yamaguchi, H.; Kondo, Y.; Kojima, C. and Ono, A. 15N-15N J-Coupling across HgII: Direct Observation of HgII-Mediated T-T Base Pairs in a DNA Duplex. J. Am. Chem. Soc. 2007, 129, 244–245; (c) Kondo, J.; Yamada, T.; Hirose, C.; Okamoto, I.; Tanaka, Y. and Ono, A. Crystal Structure of Metallo DNA Duplex Containing Consecutive Watson–Crick-like T–HgII–T Base Pairs. Angew. Chem. Int. Ed. 2014, 53: 2385–2388; (d) Yamaguchi, H.; Šebera, J.; Kondo, J.; Oda, S.; Komuro, T.; Kawamura, T.; Dairaku, T.; Kondo, Y.; Okamoto, O.; Ono, A.; Burda, J.V.; Kojima, C.; Sychrovský, V. and Tanaka, Y. The Structure of metallo-DNA with Consecutive thymine-HgII-Thymine Base Pairs Explains Positive Entropy for the Metallo Base Pair Formation. Nucleic Acids Res. 2014. 42, 4094–4099; (e) Šebera, J.; Burda, J.; Straka, M.; Ono, A.; Kojima, C.; Tanaka, Y. and Sychrovský, V. Formation of a thymine-HgII-Thymine Metal-Mediated DNA Base Pair: proposal and Theoretical Calculation of the Reaction Pathway. Chem. Eur. J. 2013, 19, 9884–9894; (f) Ono, A.; Cao, S.; Togashi, H.; Tashiro, M.; Fujimoto, T.; Machinami, T.; Oda, S.; Miyake, Y.; Okamoto, I. and Tanaka, Y. Specific Interactions between Silver(I) ions and Cytosine–Cytosine Pairs in DNA Duplexes. Chem. Commun. 2008, 4825–4827; (g) Ono, I.; Yoshida, K.; Saotome, Y.; Sakabe, R.; Okamoto, I. and Ono, A. Synthesis of Covalently Linked Parallel and Antiparallel DNA Duplexes Containing the Metal-Mediated Base Pairs T-Hg(II)-T and C-Ag(I)-C. Chem Commun. 2011, 47, 1542–1544; (h) Azam, A.T.M.Z.; Okamoto, I. and Ono, A. Synthesis and Properties of DNA Duplexes Containing Cytosine Analogs Carrying Phosphodiester Functions. Nucleic Acids Symp. Ser. 2007, 51, 153–154. DOI: 10.1021/ja056354d.
  • (a) Izatt, R.M.; Christensen, J.J. and Rytting, J.H. Sites and thermodynamic quantities associated with proton and metal ion interaction with ribonucleic acid, deoxyribonucleic acid, and their constituent bases, nucleosides, and nucleotides. Chem. Rev. 1971, 71, 439–481; (b) Saenger, W (Ed). Principles of Nucleic Acid Structure. Springer-Verlag, New York, NY, 1984. (c) Bloomfield, V.A.; Crothers, D.M. and Tinoco, Jr.I. Nucleic Acids, Structures, Properties, and Functions, University Science Books, Sausalito, CA, 2000. (d) Katz, S. Biochim. Biophys. Acta., The reversible reaction of Hg(II) and double-stranded polynucleotides. A step-function theory and its significance. 1963, 68, 240–253; (e) Navarro, A.R. and Lippert, B. Molecular Architecture with Metal Ions, Nucleobases and Other Heterocycles. Coord. Chem. Rev. 1999, 185–186, 653–667; (f) Tanaka, y.; Kojima, C.; Morita, E.H.; Kasai, Y.; Yamasaki, K.; Ono, A.; Kainosho, M. and Taira, K. Identification of the Metal Ion Binding Site on an RNA Motif from Hammerhead Ribozymes Using 15N NMR Spectroscopy. J. Am. Chem. Soc. 2002, 124, 4595–4601; (g) Knobloch, B.; Da Costa, C.P.; Linert, W. and Sigel, H. Stability Constants of Metal Ion Complexes Formed with N3-Deprotonated Uridine in Aqueous Solution. Inorg. Chem. Commun. 2003, 6, 90–93. DOI: 10.1021/cr60273a002.
  • (a) Webb. T.R. and Matteucci, M.D. Hybridization Triggered Cross-Linking of Deoxyoligonucleotides. Nucleic Acids Res. 1986, 14, 7661–7674; (b) Xu, Y.-Z., Zheng, Q. and Swann, P.F. Synthesis of DNA Containing Modified Bases by Postsynthetic Substitution. Synthesis of Oligomers Containing 4-Substituted Thymine: O4-Alkylthymine, 5-Methylcytosine, N4-(Dimethylamino)-5-Methylcytosine, and 4-Thiothymine. J. Org. Chem. 1992, 57, 3839–3845. DOI: 10.1093/nar/14.19.7661.
  • Sakamoto, S.; Yamaguchi, K. Hyperstranded DNA Architectures Observed by Cold-Spray Ion Mass Spectrometry. Angew. Chem. Int. Ed. Engl. 2003, 42, 905–908. DOI: 10.1002/anie.200390239.
  • Beaucage, S. L.; Iyer, R. P. Advances in the Synthesis of Oligonucleotides by the Phosphoramidite Approach. Tetrahedron 1992, 48, 2223–2311. DOI: 10.1016/S0040-4020(01)88752-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.