193
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Knockdown of TMEM132A restrains the malignant phenotype of gastric cancer cells via inhibiting Wnt signaling

, , , &
Pages 343-357 | Received 04 Apr 2022, Accepted 12 Nov 2022, Published online: 28 Nov 2022

References

  • Thrift, A. P.; El-Serag, H. B. Burden of Gastric Cancer. Clin. Gastroenterol. Hepatol. 2020, 18, 534–542. DOI: 10.1016/j.cgh.2019.07.045.
  • Karimi, P.; Islami, F.; Anandasabapathy, S.; Freedman, N. D.; Kamangar, F. Gastric Cancer: descriptive Epidemiology, Risk Factors, Screening, and Prevention. Cancer Epidemiol. Biomarkers Prev. 2014, 23, 700–713. DOI: 10.1158/1055-9965.EPI-13-1057.
  • Tan, Z. Recent Advances in the Surgical Treatment of Advanced Gastric Cancer: A Review. Med. Sci. Monit. 2019, 25, 3537–3541. DOI: 10.12659/MSM.916475.
  • Nusse, R.; Clevers, H. Wnt/beta-Catenin Signaling, Disease, and Emerging Therapeutic Modalities. Cell 2017, 169, 985–999. DOI: 10.1016/j.cell.2017.05.016.
  • Steinhart, Z.; Angers, S. Wnt Signaling in Development and Tissue Homeostasis. Development 2018, 145, dev146589. DOI: 10.1242/dev.146589.
  • Polakis, P. Wnt Signaling in Cancer. Cold Spring Harb. Perspect. Biol. 2012, 4, a008052. DOI: 10.1101/cshperspect.a008052.
  • Bugter, J. M.; Fenderico, N.; Maurice, M. Mutations and Mechanisms of WNT Pathway Tumour Suppressors in Cancer. Nat. Rev. Cancer 2021, 21, 5–21. DOI: 10.1038/s41568-020-00307-z.
  • Zhang, Y.; Wang, X. Targeting the Wnt/Beta-Catenin Signaling Pathway in Cancer. J. Hematol. Oncol. 2020, 13, 165. DOI: 10.1186/s13045-020-00990-3.
  • Marx, S.; Dal Maso, T.; Chen, J. W.; Bury, M.; Wouters, J.; Michiels, C.; Le Calve, B. Transmembrane (TMEM) Protein Family Members: Poorly Characterized Even If Essential for the Metastatic Process. Semin. Cancer Biol. 2020, 60, 96–106. DOI: 10.1016/j.semcancer.2019.08.018.
  • Schmit, K.; Michiels, C. TMEM Proteins in Cancer: A Review. Front. Pharmacol. 2018, 9, 1345. DOI: 10.3389/fphar.2018.01345.
  • Oh-Hashi, K.; Koga, H.; Nagase, T.; Hirata, Y.; Kiuchi, K. Characterization of the Expression and Cell-Surface Localization of Transmembrane Protein 132A. Mol. Cell Biochem. 2012, 370, 23–33. DOI: 10.1007/s11010-012-1394-8.
  • Oh-Hashi, K.; Imai, K.; Koga, H.; Hirata, Y.; Kiuchi, K. Knockdown of Transmembrane Protein 132A by RNA Interference Facilitates Serum Starvation-Induced Cell Death in Neuro2a Cells. Mol. Cell Biochem. 2010, 342, 117–123. DOI: 10.1007/s11010-010-0475-9.
  • Bauer, D.; Mazzio, E.; Soliman, K. F. A. Whole Transcriptomic Analysis of Apigenin on TNFalpha Immuno-Activated MDA-MB-231 Breast Cancer Cells. Cancer Genomics Proteomics 2019, 16, 421–431. DOI: 10.21873/cgp.20146.
  • Li, B.; Niswander, L. A. TMEM132A, a Novel Wnt Signaling Pathway Regulator through Wntless (WLS) Interaction. Front. Cell Dev. Biol. 2020, 8, 599890. DOI: 10.3389/fcell.2020.599890.
  • Togasaki, K.; Sugimoto, S.; Ohta, Y.; Nanki, K.; Matano, M.; Takahashi, S.; Fujii, M.; Kanai, T.; Sato, T. Wnt Signaling Shapes the Histologic Variation in Diffuse Gastric Cancer. Gastroenterology 2021, 160, 823–830. DOI: 10.1053/j.gastro.2020.10.047.
  • Koushyar, S.; Powell, A. G.; Vincan, E.; Phesse, T. J. Targeting Wnt Signaling for the Treatment of Gastric Cancer. IJMS 2020, 21, 3927. DOI: 10.3390/ijms21113927.
  • Chiurillo, M. A. Role of the Wnt/Beta-Catenin Pathway in Gastric Cancer: An in-Depth Literature Review. World J. Exp. Med. 2015, 5, 84–102. DOI: 10.5493/wjem.v5.i2.84.
  • Tang, Q.; Chen, J.; Di, Z.; Yuan, W.; Zhou, Z.; Liu, Z.; Han, S.; Liu, Y.; Ying, G.; Shu, X.; et al. TM4SF1 Promotes EMT and Cancer Stemness via the Wnt/Beta-Catenin/SOX2 Pathway in Colorectal Cancer. J. Exp. Clin. Cancer Res. 2020, 39, 232. DOI: 10.1186/s13046-020-01690-z.
  • Iranzo, J.; Martincorena, I.; Koonin, E. V. Cancer-Mutation Network and the Number and Specificity of Driver Mutations. Proc. Natl. Acad. Sci. U S A 2018, 115, E6010–E6019. DOI: 10.1073/pnas.1803155115.
  • Yeang, C. H.; McCormick, F.; Levine, A. Combinatorial Patterns of Somatic Gene Mutations in Cancer. Faseb J. 2008, 22, 2605–2622. DOI: 10.1096/fj.08-108985.
  • Lin, Y.; Wu, Z.; Guo, W.; Li, J. Gene Mutations in Gastric Cancer: A Review of Recent Next-Generation Sequencing Studies. Tumour Biol. 2015, 36, 7385–7394. DOI: 10.1007/s13277-015-4002-1.
  • Liu, J.; Ma, L.; Chen, Z.; Song, Y.; Gu, T.; Liu, X.; Zhao, H.; Yao, N. Identification of Critical Genes in Gastric Cancer to Predict Prognosis Using Bioinformatics Analysis Methods. Ann. Transl. Med. 2020, 8, 884. DOI: 10.21037/atm-20-4427.
  • Shi, S.; Ma, H. Y.; Zhang, Z. G. Clinicopathological and Prognostic Value of STAT3/p-STAT3 in Cervical Cancer: A Meta and Bioinformatics Analysis. Pathol. Res. Pract. 2021, 227, 153624. DOI: 10.1016/j.prp.2021.153624.
  • Cao, T.; Pan, W.; Sun, X.; Shen, H. Increased Expression of TET3 Predicts Unfavorable Prognosis in Patients with Ovarian Cancer-a Bioinformatics Integrative Analysis. J. Ovarian Res. 2019, 12, 101. DOI: 10.1186/s13048-019-0575-4.
  • Wang, J.; Gao, P.; Song, Y.; Sun, J.; Chen, X.; Yu, H.; Wang, Y.; Wang, Z. Prognostic Value of Gastric Cancer-Associated Gene Signatures: Evidence Based on a Meta-Analysis Using Integrated Bioinformatics Methods. J. Cell Mol. Med. 2018, 22, 5743–5747. DOI: 10.1111/jcmm.13823.
  • Wang, B.; Huang, Y. Which Type of Cancer Patients Are More Susceptible to the SARS-COX-2: Evidence from a Meta-Analysis and Bioinformatics Analysis. Crit. Rev. Oncol. Hematol. 2020, 153, 103032. DOI: 10.1016/j.critrevonc.2020.103032.
  • Ooi, C. H.; Ivanova, T.; Wu, J.; Lee, M.; Tan, I. B.; Tao, J.; Ward, L.; Koo, J. H.; Gopalakrishnan, V.; Zhu, Y.; et al. Oncogenic Pathway Combinations Predict Clinical Prognosis in Gastric Cancer. PLoS Genet. 2009, 5, e1000676. DOI: 10.1371/journal.pgen.1000676.
  • Tian, S.; Peng, P.; Li, J.; Deng, H.; Zhan, N.; Zeng, Z.; Dong, W. SERPINH1 Regulates EMT and Gastric Cancer Metastasis via the Wnt/Beta-Catenin Signaling Pathway. Aging (Albany NY) 2020, 12, 3574–3593. DOI: 10.18632/aging.102831.
  • Guo, Q.; Xu, J.; Huang, Z.; Yao, Q.; Chen, F.; Liu, H.; Zhang, Z.; Lin, J. ADMA Mediates Gastric Cancer Cell Migration and Invasion via Wnt/Beta-Catenin Signaling Pathway. Clin. Transl. Oncol. 2021, 23, 325–334. DOI: 10.1007/s12094-020-02422-7.
  • Zhang, C.; Zhang, M.; Ge, S.; Huang, W.; Lin, X.; Gao, J.; Gong, J.; Shen, L. Reduced m6A Modification Predicts Malignant Phenotypes and Augmented Wnt/PI3K-Akt Signaling in Gastric Cancer. Cancer Med. 2019, 8, 4766–4781. DOI: 10.1002/cam4.2360.
  • Harmston, N.; Lim, J. Y. S.; Arqués, O.; Palmer, H. G.; Petretto, E.; Virshup, D. M.; Madan, B. Widespread Repression of Gene Expression in Cancer by a Wnt/β-Catenin/MAPK Pathway. Cancer Res. 2021, 81, 464–475. DOI: 10.1158/0008-5472.can-20-2129.
  • Hu, S.; Ren, S.; Cai, Y.; Liu, J.; Han, Y.; Zhao, Y.; Yang, J.; Zhou, X.; Wang, X. Glycoprotein PTGDS Promotes Tumorigenesis of Diffuse Large B-Cell Lymphoma by MYH9-Mediated Regulation of Wnt-β-catenin-STAT3 Signaling. Cell Death Differ 2022, 29, 642–656. DOI: 10.1038/s41418-021-00880-2.
  • Xi, X. H.; Wang, Y.; Li, J.; Wang, F. W.; Tian, G. H.; Yin, M. S.; Mu, Y. L.; Chong, Z. Z. Activation of Wnt/β-Catenin/GSK3β Signaling during the Development of Diabetic Cardiomyopathy. Cardiovasc. Pathol. 2015, 24, 179–186. DOI: 10.1016/j.carpath.2014.12.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.