79
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

MicroRNA-142-5p promotes the proliferation and metastasis of nasopharyngeal carcinoma

, , , , , & show all
Pages 657-670 | Received 22 Jun 2022, Accepted 14 Feb 2023, Published online: 17 Mar 2023

References

  • Chang, E. T.; Adami, H. O. The Enigmatic Epidemiology of Nasopharyngeal Carcinoma. Cancer Epidemiol. Biomarker. Prev. 2006, 15, 1765–1777. DOI: 10.1158/1055-9965.EPI-06-0353.
  • Torre, L. A.; Bray, F.; Siegel, R. L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global Cancer Statistics, 2012. CA Cancer J. Clin. 2015, 65, 87–108.
  • Zhang, F.; Zhang, J. Clinical Hereditary Characteristics in Nasopharyngeal Carcinoma through Ye-Liang’s Family Cluster. Chin. Med. J. (Engl.) 1999, 112, 185–187.
  • Lee, A. W.; Sze, W. M.; Au, J. S.; Leung, S. F.; Leung, T. W.; Chua, D. T.; Zee, B. C.; Law, S. C.; Teo, P. M.; Tung, S. Y.; et al. Treatment Results for Nasopharyngeal Carcinoma in the Modern Era: The Hong Kong Experience. Int. J. Radiat. Oncol. Biol. Phys. 2005, 61, 1107–1116. DOI: 10.1016/j.ijrobp.2004.07.702.
  • Tan, W.-L.; Tan, E.-H.; Lim, D. W.-T.; Ng, Q.-S.; Tan, D. S.-W.; Jain, A.; Ang, M.-K. Advances in Systemic Treatment for Nasopharyngeal Carcinoma. Chin. Clin. Oncol. 2016, 5, 21–21. DOI: 10.21037/cco.2016.03.03.
  • Feng, X.; Zhou, S.; Wang, J.; Hu, W. MicroRNA Profiles and Functions in Mosquitoes. PLoS Negl. Trop. Dis. 2018, 12, e0006463. DOI: 10.1371/journal.pntd.0006463.
  • Rossi, M.; Amodio, N.; Martino, M.; Tagliaferri, P.; Tassone, P.; Cho, W. MicroRNA and Multiple Myeloma: From Laboratory Findings to Translational Therapeutic Approaches. CPB 2014, 15, 459–467. DOI: 10.2174/1389201015666140519104743.
  • Rocci, A.; Hofmeister, C. C.; Pichiorri, F. The Potential of miRNAs as Biomarkers for Multiple Myeloma. Expert. Rev. Mol. Diagn. 2014, 14, 947–959. DOI: 10.1586/14737159.2014.946906.
  • Oom, A. L.; Humphries, B. A.; Yang, C. MicroRNAs: Novel Players in Cancer Diagnosis and Therapies. Biomed. Res. Int. 2014, 2014, 959461. DOI: 10.1155/2014/959461.
  • Peng, D.; Dong, J.; Zhao, Y.; Peng, X.; Tang, J.; Chen, X.; Wang, L.; Hu, D.-N.; Reinach, P. S.; Qu, J.; et al. miR-142-3p Suppresses Uveal Melanoma by Targeting CDC25C, TGFβR1, GNAQ, WASL, and RAC1. CMAR 2019, ume 11, 4729–4742. DOI: 10.2147/CMAR.S206461.
  • Yao, R.; Xu, L.; Wei, B.; Qian, Z.; Wang, J.; Hui, H.; Sun, Y. miR-142-5p Regulates Pancreatic Cancer Cell Proliferation and Apoptosis by Regulation of RAP1A. Pathol. Res. Pract. 2019, 215, 152416. DOI: 10.1016/j.prp.2019.04.008.
  • Jin, C.; Xiao, L.; Zhou, Z.; et al. MiR-142-3p Suppresses the Proliferation, Migration and Invasion through Inhibition of NR2F6 in Lung Adenocarcinoma. Hum. Cell. 2019,
  • Yu, Q.; Xiang, L.; Chen, Z.; Liu, X.; Ou, H.; Zhou, J.; Yang, D. MALAT1 Functions as a Competing Endogenous RNA to Regulate SMAD5 Expression by Acting as a Sponge for miR-142-3p in Hepatocellular Carcinoma. Cell Biosci. 2019, 9, 39. DOI: 10.1186/s13578-019-0299-6.
  • Gao, W.; Pang, D.; Yu, S. Serum Level of miR-142-3p Predicts Prognostic Outcome for Colorectal Cancer Following Curative Resection. J. Int. Med. Res. 2019, 47, 2116–2125. DOI: 10.1177/0300060519834815.
  • Mansoori, B.; Mohammadi, A.; Gjerstorff, M. F.; et al. miR-142-3p Is a Tumor Suppressor That Inhibits Estrogen Receptor Expression in ER-Positive Breast Cancer. J. Cell. Physiol. 2019,
  • Qi, X.; Li, J.; Zhou, C.; Lv, C.; Tian, M. MiR-142-3p Suppresses SOCS6 Expression and Promotes Cell Proliferation in Nasopharyngeal Carcinoma. Cell. Physiol. Biochem. 2015, 36, 1743–1752. DOI: 10.1159/000430147.
  • Lizumi, S.; Uchida, F.; Nagai, H.; et al. MicroRNA 142-5p Promotes Tumor Growth in Oral Squamous Cell Carcinoma via the PI3K/AKT Pathway by Regulating PTEN. Heliyon. 2021, 7, e08086.
  • Guo, J.; Tang, T.; Li, J.; Yang, Y.; Quan, Y.; Zhang, L.; Huang, W.; Zhou, M. Overexpression of MicroRNA 142-5p Suppresses the Progression of Cervical Cancer through Targeting Phosphoinositol-3-Kinase Adaptor Protein 1 Expression. Mol. Cell. Biol. 2021, 41, e0036320. DOI: 10.1128/MCB.00363-20.
  • Xu, W.; Wang, W. MicroRNA‑142‑5p Modulates Breast Cancer Cell Proliferation and Apoptosis by Targeting Phosphatase and Tensin Homolog. Mol. Med. Rep. 2018, 17, 7529–7536.
  • Li, D. P.; Chai, W.; Liu, Y. H.; et al. MicroRNA-142 Promotes the Development of Nasopharyngeal Carcinoma through Targeting PTEN. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 3806–3812.
  • Zhu, C.; Jiang, X.; Xiao, H.; Guan, J. Tumor-Derived Extracellular Vesicles Inhibit HGF/c-Met and EGF/EGFR Pathways to Accelerate the Radiosensitivity of Nasopharyngeal Carcinoma Cells via microRNA-142-5p Delivery. Cell. Death Discov. 2022, 8, 1.
  • Ou, Y.-H.; Chung, P.-H.; Hsu, F.-F.; Sun, T.-P.; Chang, W.-Y.; Shieh, S.-Y. The Candidate Tumor Suppressor BTG3 Is a Transcriptional Target of p53 That Inhibits E2F1. Embo. J. 2007, 26, 3968– 3980. DOI: 10.1038/sj.emboj.7601825.
  • Miyai, K.; Yoneda, M.; Hasegawa, U.; Toita, S.; Izu, Y.; Hemmi, H.; Hayata, T.; Ezura, Y.; Mizutani, S.; Miyazono, K.; et al. ANA Deficiency Enhances Bone Morphogenetic Protein-Induced Ectopic Bone Formation via Transcriptional Events. J. Biol. Chem. 2009, 284, 10593–10600. DOI: 10.1074/jbc.M807677200.
  • Yoshida, Y.; Hosoda, E.; Nakamura, T.; et al. Association of ANA, a Member of the Antiproliferative Tob Family Proteins, with a Caf1 Component of the CCR4 Transcriptional Regulatory Complex. Jpn. J. Cancer Res. 2001, 92,592–596.
  • Cheng, Y.-C.; Chen, P.-H.; Chiang, H.-Y.; Suen, C.-S.; Hwang, M.-J.; Lin, T.-Y.; Yang, H.-C.; Lin, W.-C.; Lai, P.-L.; Shieh, S.-Y.; et al. Candidate Tumor Suppressor B-Cell Translocation Gene 3 Impedes Neoplastic Pro-Gression by Suppression of AKT. Cell Death Dis. 2015, 6, e1584–e1584. DOI: 10.1038/cddis.2014.550.
  • Chen, X.; Chen, G.; Cao, X.; Zhou, Y.; Yang, T.; Wei, S. Downregulation of BTG3 in Non-Small Cell Lung Cancer. Biochem. Biophys. Res. Commun. 2013, 437, 173–178.
  • Ren, X. L.; Zhu, X. H.; Li, X. M.; Li, Y. L.; Wang, J. M.; Wu, P. X.; Lv, Z. B.; Ma, W. H.; Liao, W. T.; Wang, W.; et al. Down-Regulation of BTG3 Promotes Cell Proliferation, Migration and Invasion and Predicts Survival in Gastric Cancer. J. Cancer Res. Clin. Oncol. 2015, 141, 397–405. DOI: 10.1007/s00432-014-1826-9.
  • Lv, Z.; Zou, H.; Peng, K.; Wang, J.; Ding, Y.; Li, Y.; Ren, X.; Wang, F.; Chang, R.; Liang, L.; et al. The Suppressive Role and Aberrent Promoter Methylation of BTG3 in the Progression of Hepatocellular Carcinoma. PLoS One. 2013, 8, e77473. DOI: 10.1371/journal.pone.0077473.
  • Majid, S.; Dar, A. A.; Ahmad, A. E.; Hirata, H.; Kawakami, K.; Shahryari, V.; Saini, S.; Tanaka, Y.; Dahiya, A. V.; Khatri, G.; et al. BTG3 Tumor Suppressor Gene Promoter Demethylation, Histone Modification and Cell Cycle Arrest by Genistein in Renal Cancer. Carcinogenesis 2009, 30, 662–670.
  • Kee, H. J.; Park, S.; Kwon, J.-S.; Choe, N.; Ahn, Y.; Kook, H.; Jeong, M. H. B Cell Translocation Gene, a Direct Target of miR-142-5p, Inhibits Vascular Smooth Muscle Cell Proliferation by down- Regulating Cell Cycle Progression. FEBS Lett. 2013, 587, 2385–2392. DOI: 10.1016/j.febslet.2013.06.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.