67
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Association between genetic variants of GRM7 (rs1396409 and rs9883258) and treatment outcomes in Schizophrenic Egyptian patients

ORCID Icon, , , ORCID Icon & ORCID Icon
Pages 540-556 | Received 03 Feb 2023, Accepted 07 Nov 2023, Published online: 24 Nov 2023

References

  • Nia, M. H.; Shahroudi, M. J.; Saravani, R.; Sargazi, S.; Moudi, M.; Mojahed, A. Relationship between P2XR4 Gene Variants and the Risk of Schizophrenia in South-East of Iran: A Preliminary Case-Control Study and In Silico Analysis. Iran. J. Public Health 2021, 50, 978–989.
  • Sargazi, S.; Mirani Sargazi, F.; Moudi, M.; Heidari Nia, M.; Saravani, R.; Mirinejad, S.; Shahraki, S.; Shakiba, M. Impact of Proliferator-Activated Receptor γ Gene Polymorphisms on Risk of Schizophrenia: A Case-Control Study and Computational Analyses. Iran. J. Psychiatr. 2020, 15, 286–296. DOI: 10.18502/ijps.v15i4.4294.
  • Ghanem, M.; Gadallah, M.; Meky, F.; Mourad, S.; El Kholy, G. National Survey of Prevalence of Mental Disorders in Egypt: Preliminary Survey. East. Mediterr. Health J. 2009, 15, 65–75. DOI: 10.26719/2009.15.1.65.
  • Young, J.; Geyer, M. Developing Treatments for Cognitive Deficits in Schizophrenia. The Challenge of Translation. J. Psychopharmacol. 2015, 29, 178–196. DOI: 10.1177/0269881114555252.
  • Foussias, G.; Agid, O.; Fervaha, G.; Remington, G. Negative Symptoms of Schizophrenia: Clinical Features, Relevance to Real World Functioning and Specificity versus Other Cns Disorders. Eur. Neuropsychopharmacol. 2014, 24, 693–709. DOI: 10.1016/j.euroneuro.2013.10.017.
  • Vancampfort, D.; Wampers, M.; Mitchell, A. J.; Correll, C. U.; De Herdt, A.; Probst, M.; De Hert, M. A Meta-Analysis of Cardio-Metabolic Abnormalities in Drug Naïve, First-Episode and Multi-Episode Patients with Schizophrenia versus General Population Controls. World Psychiatry 2013, 12, 240–250. DOI: 10.1002/wps.20069.
  • Ohi, K.; Hashimoto, R.; Ikeda, M.; Yamamori, H.; Yasuda, Y.; Fujimoto, M.; Umeda-Yano, S.; Fukunaga, M.; Fujino, H.; Watanabe, Y.; et al. Glutamate Networks Implicate Cognitive Impairments in Schizophrenia: Genome-Wide Association Studies of 52 Cognitive Phenotypes. Schizophr. Bull. 2015, 41, 909–918. DOI: 10.1093/schbul/sbu171.
  • Ballard, T. M.; Pauly-Evers, M.; Higgins, G. A.; Ouagazzal, A. M.; Mutel, V.; Borroni, E.; Kemp, J. A.; Bluethmann, H.; Kew, J. N. Severe Impairment of NMDA Receptor Function in Mice Carrying Targeted Point Mutations in the Glycine Binding Site Results in Drug-Resistant Nonhabituating Hyperactivity. J. Neurosci. 2002, 22, 6713–6723. PMID: 12151550; PMCID: PMC6758156. DOI: 10.1523/JNEUROSCI.22-15-06713.2002.
  • Jalan-Sakrikar, N.; Field, J. R.; Klar, R.; Mattmann, M. E.; Gregory, K. J.; Zamorano, R.; Engers, D. W.; Bollinger, S. R.; Weaver, C. D.; Days, E. L.; et al. Identification of Positive Allosteric Modulators VU0155094 (ML397) and VU0422288 (ML396) Reveals New Insights into the Biology of Metabotropic Glutamate Receptor 7. ACS Chem. Neurosci. 2014, 5, 1221–1237. DOI: 10.1021/cn500153z.
  • Irmansyah, I.; Schwab, S. G.; Heriani Handoko, H. Y.; Kusumawardhani, A.; Widyawati, I.; Amir, N.; Nasrun, M. W. S.; Holmans, P.; Knapp, M.; Wildenauer, D. B, Heriani. Genome-Wide Scan in 124 Indonesian Sibpair Families with Schizophrenia Reveals Genome-Wide Significant Linkage to a Locus on Chromosome 3p26-21. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2008, 147B, 1245–1252. DOI: 10.1002/ajmg.b.30763.
  • Sargazi, S.; Zahedi Abghari, A.; Mirinejad, S.; Heidari Nia, M.; Majidpour, M.; Danesh, H.; Saravani, R.; Sheervalilou, R.; Shakiba, M.; Zahedi Abghari, F. Long Noncoding RNA HOTAIR Polymorphisms and Susceptibility to Bipolar Disorder: A Preliminary Case-Control Study. Nucleosides. Nucleotides Nucleic Acids. 2022, 41, 684–701. Epub 2022 Apr 25. PMID: 35469536 DOI: 10.1080/15257770.2022.2065017.
  • Stevenson, J. M.; Reilly, J. L.; Harris, M. S. H.; Patel, S. R.; Weiden, P. J.; Prasad, K. M.; Badner, J. A.; Nimgaonkar, V. L.; Keshavan, M. S.; Sweeney, J. A.; et al. Antipsychotic Pharmacogenomics in First Episode Psychosis: A Role for Glutamate Genes. Transl. Psychiatry. 2016, 6, e739–e739. DOI: 10.1038/tp.2016.10.
  • Taylor, D. L.; Tiwari, A. K.; Lieberman, J. A.; Potkin, S. G.; Meltzer, H. Y.; Knight, J.; Remington, G.; Muller, D. J.; Kennedy, J. L. Pharmacogenetic Analysis of Functional Glutamate System Gene Variants and Clinical Response to Clozapine. Mol. Neuropsychiatry. 2017, 2, 185–197. DOI: 10.1159/000449224.
  • Bousman, C. A.; Arandjelovic, K.; Mancuso, S. G.; Eyre, H. A.; Dunlop, B. W. Pharmacogenetic Tests and Depressive Symptom Remission: A Meta-Analysis of Randomized Controlled Trials. Pharmacogenomics 2019, 20, 37–47. DOI: 10.2217/pgs-2018-0142.
  • Zhai, D.; Cui, T.; Xu, Y.; Feng, Y.; Wang, X.; Yang, Y.; Li, S.; Zhou, D.; Dong, G.; Zhao, Y.; et al. Cardiometabolic Risk in First-Episode Schizophrenia (FES) Patients with the Earliest Stages of Both Illness and Antipsychotic Treatment. Schizophr. Res. 2017, 179, 41–49. DOI: 10.1016/j.schres.2016.09.001.
  • Ezequiel, U. Neuropsychological Subtypes of Schizophrenia and Prefrontal Circuits. Eneurobiology 2016, 7, 280516.
  • Yu, H.; Yan, H.; Wang, L.; Li, J.; Tan, L.; Deng, W.; Chen, Q.; Yang, G.; Zhang, F.; Lu, T.; et al. Five Novel Loci Associated with Antipsychotic Treatment Response in Patients with Schizophrenia: A Genome-Wide Association Study. Lancet. Psychiatry 2018, 5, 327–338. DOI: 10.1016/S2215-0366(18)30049-X.
  • Kay, S. R.; Fiszbein, A.; Opler, L. A. The Positive and Negative Syndrome Scale (PANSS) for Schizophrenia. Schizophr. Bull. 1987, 13, 261–276. DOI: 10.1093/SCHBUL/13.2.261.
  • Friedewald, W. T.; Levy, R. I.; Fredrickson, D. S. Estimation of the Concentration of Low-Density Lipoprotein Cholesterol in Plasma, without Use of the Preparative Ultracentrifuge. Clin. Chem. 1972, 18, 499–502. DOI: 10.1093/clinchem/18.6.499.
  • Azari, I.; Moghadam, R.; Fallah, H.; Noroozi, R.; Fard, S.; Taheri, M. GRM7 Polymorhisms and Risk of Schizoherenia in Iranian Population. Metab. Brain Dis. 2019, 34, 847–852. DOI: 10.1007/s11011-018-0380-6.
  • Nho, K.; Ramanan, V. K.; Horgusluoglu, E.; Kim, S.; Inlow, M. H.; Risacher, S. L.; McDonald, B. C.; Farlow, M. R.; Foroud, T. M.; Gao, S.; et al. Comprehensive Gene-and Pathway-Based Analysis of Depressive Symptoms in Older Adults. J. Alzheimers. Dis. 2015, 45, 1197–1206. (), DOI: 10.3233/JAD-148009.
  • Elia, J.; Glessner, J. T.; Wang, K.; Takahashi, N.; Shtir, C. J.; Hadley, D.; Sleiman, P. M.; Zhang, H.; Kim, C. E.; Robison, R.; et al. Genome-Wide Copy Number Variation Study Associates Metabotropic Glutamate Receptor Gene Networks with Attention Deficit Hyperactivity Disorder. Nat. Genet. 2011, 44, 78–84. DOI: 10.1038/ng.1013.
  • Yang, Y.; Pan, C. Role of Metabotropic Glutamate Receptor 7 in Autism Spectrum Disorders: A Pilot Study. Life Sci. 2013, 92, 149–153. DOI: 10.1016/j.lfs.2012.11.010.
  • Gyetvai, B.; Simonyi, A.; Oros, M.; Saito, M.; Smiley, J.; Vadász, C. M. GluR7 Genetics and Alcohol: Intersection Yields Clues for Addiction. Neurochem. Res. 2011, 36, 1087–1100. DOI: 10.1007/s11064-011-0452-z.
  • O'Connor, R. M.; Thakker, D. R.; Schmutz, M.; van der Putten, H.; Hoyer, D.; Flor, P. J.; Cryan, J. F. Adult siRNA-Induced Knockdown of mGlu7 Receptors Reduces Anxiety in the Mouse. Neuropharmacology 2013, 72, 66–73. DOI: 10.1016/j.neuropharm.2013.03.028.
  • Gee, C. E.; Peterlik, D.; Neuhauser, C.; Bouhelal, R.; Kaupmann, K.; Laue, G.; Uschold-Schmidt, N.; Feuerbach, D.; Zimmermann, K.; Ofner, S.; et al. Blocking Metabotropic Glutamate Receptor Subtype 7 (mGlu7) via the Venus Flytrap Domain (VFTD) Inhibits Amygdala Plasticity, Stress, and Anxiety-Related Behavior. J. Biol. Chem. 2014, 289, 10975–10987. DOI: 10.1074/jbc.M113.542654.
  • Jajodia, A.; Kaur, H.; Kumari, K.; Gupta, M.; Baghel, R.; Srivastava, A.; Sood, M.; Chadd, R. K.; Jain, S.; Kukreti, R. Evidence for Schizophrenia Susceptibility Alleles in the Indian Population: An Association of Neurodevelopmental Genes in Case–Control and Familial Samples. Schizophr. Res. 2015, 162, 112–117. DOI: 10.1016/j.schres.2014.12.031.
  • Ganda, C.; Schwab, S. G.; Amir, N.; Heriani, H.; Irmansyah, I.; Kusumawardhani, A.; Nasrun, M.; Widyawati, I.; Maier, W.; Wildenauer, D. B. A Family-Based Association Study of DNA Sequence Variants in GRM7 with Schizophrenia in an Indonesian Population. Int. J. Neuropsychopharmacol. 2009, 12, 1283–1289. DOI: 10.1017/S1461145709990356.
  • Ohtsuki, T.; Koga, M.; Ishiguro, H.; Horiuchi, Y.; Arai, M.; Niizato, K.; Itokawa, M.; Inada, T.; Iwata, N.; Iritani, S.; et al.,. A Polymorphism of the Metabotropic Glutamate Receptor mGluR7 (GRM7) Gene is Associated with Schizophrenia. Schizophr. Res. 2008, 101, 9–16. DOI: 10.1016/j.schres.2008.01.027.
  • Tassin, V.; Girard, B.; Chotte, A.; Fontanaud, P.; Rigault, D.; Kalinichev, M.; Perroy, J.; Acher, F.; Fagni, L.; Bertaso, F. Phasic and Tonic mGlu7 Receptor Activity Modulates the Thalamocortical Network. Front. Neural Circuits. 2016, 10, 31. DOI: 10.3389/fncir.2016.00031.
  • Shibata, H.; Tani, A.; Chikuhara, T.; Kikuta, R.; Sakai, M.; Ninomiya, H.; Tashiro, N.; Iwata, N.; Ozaki, N.; Fukumaki, Y. Association Study of Polymorphisms in the Group III Metabotropic Glutamate Receptor Genes, GRM4 and GRM7, with Schizophrenia. Psychiatry Res. 2009, 167, 88–96. DOI: 10.1016/j.psychres.2007.12.002.
  • Novick, D.; Haro, J. M.; Suarez, D.; Perez, V.; Dittmann, R. W.; Haddad, P. M. Predictors and Clinical Consequences of Non-Adherence with Antipsychotic Medication in the Outpatient Treatment of Schizophrenia. Psychiatry Res. 2010, 176, 109–113. DOI: 10.1016/j.psychres.2009.05.004.
  • Chaumette, B.; Sengupta, S. M.; Lepage, M.; Malla, A.; Iyer, S. N.; Kebir, O.; Dion, P. A.; Rouleau, G. A.; Krebs, M.-O.; Shah, J. L.; Joober, R, ICAAR study group. A Polymorphism in the Glutamate Metabotropic Receptor 7 is Associated with Cognitive Deficits in the Early Phases of Psychosis. Schizophr. Res. 2022, 249, 56–62. DOI: 10.1016/j.schres.2020.06.019.
  • Smeland, O. B.; Frei, O.; Kauppi, K.; Hill, W. D.; Li, W.; Wang, Y.; Krull, F.; Bettella, F.; Eriksen, J. A.; Witoelar, A.; et al. Identification of Genetic Loci Jointly Influencing Schizophrenia Risk and the Cognitive Traits of Verbal-Numerical Reasoning, Reaction Time, and General Cognitive Function. JAMA Psychiatry. 2017, 74, 1065–1075. DOI: 10.1001/jamapsychiatry.2017.1986.
  • Sniekers, S.; Stringer, S.; Watanabe, K.; Jansen, P. R.; Coleman, J. R. I.; Krapohl, E.; Taskesen, E.; Hammerschlag, A. R.; Okbay, A.; Zabaneh, D.; et al. Genome-Wide Association Meta-Analysis of 78,308 Individuals Identifies New Loci and Genes Influencing Human Intelligence. Nat. Genet. 2017, 49, 1107–1112. DOI: 10.1038/ng.3869.
  • MacKenzie, N. E.; Kowalchuk, C.; Agarwal, S. M.; Costa-Dookhan, K. A.; Caravaggio, F.; Gerretsen, P.; Chintoh, A.; Remington, G. J.; Taylor, V. H.; Müeller, D. J.; et al. Antipsychotics, Metabolic Adverse Effects, and Cognitive Function in Schizophrenia. Front. Psychiatry. 2018, 9, 622. DOI: 10.3389/fpsyt.2018.00622.
  • Gohar, S., Dieset, I., Steen, N., Mørch, R., Iversen, T., Steen, V., Andreassen, O; Melle, I. Association between Serum Lipid Levels, Osteoprotegerin and Depressive Symptomatology in Psychotic Disorders. Eur. Arch. Psychiatry Clin. Neurosci. 2019, 269, 795–802. DOI: 10.1007/s00406-018-0897-z.
  • Yang, Y.; Xie, P.; Long, Y.; Huang, J.; Xiao, J.; Zhao, J.; Yue, W.; Wu, R. Previous Exposure to Antipsychotic Treatment is an Effective Predictor of Metabolic Disturbances Experienced with Current Antipsychotic Drug Treatments. BMC Psychiatry. 2022, 22, 210. 10.1186/s12888-022-03853-y
  • Gjerde, P.; Dieset, I.; Simonsen, C.; Hoseth, E.; Iversen, T.; Lagerberg, T.; Lyngstad, S.; Mørch, R.; Skrede, S.; Andreassen, O.; et al. Increase in Serum HDL Level is Associated with Less Negative Symptoms after One Year of Antipsychotic Treatment in First-Episode Psychosis. Schizophr. Res. 2018, 197, 253–260. DOI: 10.1016/j.schres.2017.10.042.
  • Gjerde, P.; Simonsen, C.; Lagerberg, T.; Steen, N.; Andreassen, O.; Steen, V.; Melle, I. Sex-Specific Effect of Serum Lipids and Body Mass Index on Psychotic Symptoms, a Cross-Sectional Study of First-Episode Psychosis Patients. Front. Psychiatry. 2021, 12, 723158. DOI: 10.3389/fpsyt.2021.723158.
  • Sen, P.; Adewusi, D.; Blakemore, A.; Kumari, V. How Do Lipids Influence Risk of Violence, Self-Harm and Suicidality in People with Psychosis? A Systematic Review. Aust. N Z J. Psychiatry. 2022, 56, 451–488. DOI: 10.1177/00048674211025608.
  • Fernandes, B. S.; Steiner, J.; Bernstein, H.-G.; Dodd, S.; Pasco, J. A.; Dean, O. M.; Nardin, P.; Gonçalves, C.-A.; Berk, M. Creactive Protein is Increased in Schizophrenia but is Not Altered by Antipsychotics: Meta-Analysis and Implications. Mol. Psychiatry. 2016, 21, 554–564. 35. DOI: 10.1038/mp.2015.87.
  • Goff, D. C.; Romero, K.; Paul, J.; Mercedes Perez-Rodriguez, M.; Crandall, D.; Potkin, S. G. Biomarkers for Drug Development in Early Psychosis: Current Issues and Promising Directions. Eur. Neuropsychopharmacol. 2016, 26, 923–937.
  • Liang, W.; Yu, H.; Su, Y.; Lu, T.; Yan, H.; Yue, W.; Zhang, D. Variants ofGRM7as Risk Factor and Response to Antipsychotic Therapy in Schizophrenia. Transl. Psychiatry 2020, 10, 83. DOI: 10.1038/s41398-020-0763-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.