171
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Characterization of serum extracellular vesicles and their differential level of miR-197-3p in familial Mediterranean fever patients

, , , , , , , , & show all
Pages 557-571 | Received 19 Dec 2022, Accepted 08 Nov 2023, Published online: 02 Dec 2023

References

  • Özen, S. Update on the Epidemiology and Disease Outcome of Familial Mediterranean Fever. Best Pract. Res. Clin. Rheumatol. 2018, 32, 254–260. DOI: 10.1016/j.berh.2018.09.003.
  • A Candidate Gene for Familial Mediterranean Fever. Nat. Genet. 1997, 17, 25–31. DOI: 10.1038/ng0997-25.
  • Ancient Missense Mutations in a New Member of the RoRet Gene Family Are Likely to Cause Familial Mediterranean Fever. The International FMF Consortium. Cell 1997, 90, 797–807. DOI: 10.1016/s0092-8674(00)80539-5.
  • Rigante, D. Autoinflammatory Syndromes behind the Scenes of Recurrent Fevers in Children. Med. Sci. Monit. 2009, 15, Ra179–Ra187.
  • Manukyan, G.; Aminov, R. Update on Pyrin Functions and Mechanisms of Familial Mediterranean Fever. Front. Microbiol. 2016, 7, 456. DOI: 10.3389/fmicb.2016.00456.
  • Ozen, S.; Karaaslan, Y.; Ozdemir, O.; Saatci, U.; Bakkaloglu, A.; Koroglu, E.; Tezcan, S. Prevalence of Juvenile Chronic Arthritis and Familial Mediterranean Fever in Turkey: A Field Study. J. Rheumatol. 1998, 25, 2445–2449.
  • Moradian, M. M.; Sarkisian, T.; Ajrapetyan, H.; Avanesian, N. Genotype-Phenotype Studies in a Large Cohort of Armenian Patients with Familial Mediterranean Fever Suggest Clinical Disease with Heterozygous MEFV Mutations. J. Hum. Genet. 2010, 55, 389–393. DOI: 10.1038/jhg.2010.52.
  • Marek-Yagel, D.; Berkun, Y.; Padeh, S.; Abu, A.; Reznik-Wolf, H.; Livneh, A.; Pras, M.; Pras, E. Clinical Disease among Patients Heterozygous for Familial Mediterranean Fever. Arthritis Rheum. 2009, 60, 1862–1866. DOI: 10.1002/art.24570.
  • Balci-Peynircioglu, B.; Akkaya-Ulum, Y. Z.; Akbaba, T. H.; Tavukcuoglu, Z. Potential of miRNAs to Predict and Treat Inflammation from the Perspective of Familial Mediterranean Fever. Inflamm. Res. 2019, 68, 905–913. DOI: 10.1007/s00011-019-01272-6.
  • Lam, J. K.; Chow, M. Y.; Zhang, Y.; Leung, S. W. siRNA Versus miRNA as Therapeutics for Gene Silencing. Mol. Ther. Nucleic Acids 2015, 4, e252. DOI: 10.1038/mtna.2015.23.
  • Paul, P.; Chakraborty, A.; Sarkar, D.; Langthasa, M.; Rahman, M.; Bari, M.; Singha, R. S.; Malakar, A. K.; Chakraborty, S. Interplay between miRNAs and Human Diseases. J. Cell Physiol. 2018, 233, 2007–2018. DOI: 10.1002/jcp.25854.
  • Akkaya-Ulum, Y. Z.; Balci-Peynircioglu, B.; Karadag, O.; Eroglu, F. K.; Kalyoncu, U.; Kiraz, S.; Ertenli, A. I.; Özen, S.; Yilmaz, E. Alteration of the microRNA Expression Profile in Familial Mediterranean Fever Patients. Clin. Exp. Rheumatol. 2017, 35Suppl 108(6), 90–94.
  • Latsoudis, H.; Mashreghi, M. F.; Grün, J. R.; Chang, H. D.; Stuhlmüller, B.; Repa, A.; Gergiannaki, I.; Kabouraki, E.; Vlachos, G. S.; Häupl, T.; et al. Differential Expression of miR-4520a Associated With Pyrin Mutations in Familial Mediterranean Fever (FMF). J. Cell. Physiol. 2017, 232, 1326–1336. DOI: 10.1002/jcp.25602.
  • Koga, T.; Migita, K.; Sato, T.; Sato, S.; Umeda, M.; Nonaka, F.; Fukui, S.; Kawashiri, S. Y.; Iwamoto, N.; Ichinose, K.; et al. MicroRNA-204-3p Inhibits Lipopolysaccharide-Induced Cytokines in Familial Mediterranean Fever via the Phosphoinositide 3-Kinase γ Pathway. Rheumatology 2018, 57, 718–726. DOI: 10.1093/rheumatology/kex451.
  • Amarilyo, G.; Pillar, N.; Ben-Zvi, I.; Weissglas-Volkov, D.; Zalcman, J.; Harel, L.; Livneh, A.; Shomron, N. Analysis of microRNAs in Familial Mediterranean Fever. PLOS One 2018, 13, e0197829. DOI: 10.1371/journal.pone.0197829.
  • Akbaba, T. H.; Akkaya-Ulum, Y. Z.; Tavukcuoglu, Z.; Bilginer, Y.; Ozen, S.; Balci-Peynircioglu, B. Inflammation-Related Differentially Expressed Common miRNAs in Systemic Autoinflammatory Disorders Patients Can Regulate the Clinical Course. Clin. Exp. Rheumatol. 2021, 39 Suppl 132, 109–117. DOI: 10.55563/clinexprheumatol/t67tvc.
  • Philippe, L.; Alsaleh, G.; Pichot, A.; Ostermann, E.; Zuber, G.; Frisch, B.; Sibilia, J.; Pfeffer, S.; Bahram, S.; Wachsmann, D.; et al. MiR-20a Regulates ASK1 Expression and TLR4-Dependent Cytokine Release in Rheumatoid Fibroblast-like Synoviocytes. Ann. Rheum. Dis. 2013, 72, 1071–1079. DOI: 10.1136/annrheumdis-2012-201654.
  • Zhu, D.; Pan, C.; Li, L.; Bian, Z.; Lv, Z.; Shi, L.; Zhang, J.; Li, D.; Gu, H.; Zhang, C. Y.; et al. MicroRNA-17/20a/106a Modulate Macrophage Inflammatory Responses through Targeting Signal-Regulatory Protein α. J. Allergy Clin. Immunol. 2013, 132, 426–436.e428. DOI: 10.1016/j.jaci.2013.02.005.
  • Fiori, M. E.; Barbini, C.; Haas, T. L.; Marroncelli, N.; Patrizii, M.; Biffoni, M.; De Maria, R. Antitumor Effect of miR-197 Targeting in p53 Wild-Type Lung Cancer. Cell Death Differ. 2014, 21, 774–782. DOI: 10.1038/cdd.2014.6.
  • Mavridis, K.; Gueugnon, F.; Petit-Courty, A.; Courty, Y.; Barascu, A.; Guyetant, S.; Scorilas, A. The oncomiR miR-197 is a Novel Prognostic Indicator for Non-Small Cell Lung Cancer Patients. Br. J. Cancer 2015, 112, 1527–1535. DOI: 10.1038/bjc.2015.119.
  • Ni, J. S.; Zheng, H.; Huang, Z. P.; Hong, Y. G.; Ou, Y. L.; Tao, Y. P.; Wang, M. C.; Wang, Z. G.; Yang, Y.; Zhou, W. P. MicroRNA-197-3p Acts as a Prognostic Marker and Inhibits Cell Invasion in Hepatocellular Carcinoma. Oncol. Lett. 2019, 17, 2317–2327. DOI: 10.3892/ol.2018.9848.
  • Chen, L.; Li, C.; Peng, Z.; Zhao, J.; Gong, G.; Tan, D. miR-197 Expression in Peripheral Blood Mononuclear Cells from Hepatitis B Virus-Infected Patients. Gut Liver 2013, 7, 335–342. DOI: 10.5009/gnl.2013.7.3.335.
  • Wang, H.; Su, X.; Yang, M.; Chen, T.; Hou, J.; Li, N.; Cao, X. Reciprocal Control of miR-197 and IL-6/STAT3 Pathway Reveals miR-197 as Potential Therapeutic Target for Hepatocellular Carcinoma. Oncoimmunology 2015, 4, e1031440. DOI: 10.1080/2162402x.2015.1031440.
  • Liu, M.; Zhang, Y.; Cao, X.; Shi, T.; Yan, Y. miR-197 Participates in Lipopolysaccharide-Induced Cardiomyocyte Injury by Modulating SIRT1. Cardiol. Res. Pract. 2022, 2022, 7687154–7687159. DOI: 10.1155/2022/7687154.
  • Akkaya-Ulum, Y. Z.; Akbaba, T. H.; Tavukcuoglu, Z.; Chae, J. J.; Yilmaz, E.; Ozen, S.; Balci-Peynircioglu, B. Familial Mediterranean Fever-Related miR-197-3p Targets IL1R1 Gene and Modulates Inflammation in Monocytes and Synovial Fibroblasts. Sci. Rep. 2021, 11, 685. DOI: 10.1038/s41598-020-80097-4.
  • Turchinovich, A.; Weiz, L.; Burwinkel, B. Extracellular miRNAs: The Mystery of Their Origin and Function. Trends Biochem. Sci. 2012, 37, 460–465. DOI: 10.1016/j.tibs.2012.08.003.
  • Théry, C.; Witwer, K. W.; Aikawa, E.; Alcaraz, M. J.; Anderson, J. D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin‐Smith, G. K.; et al. Minimal Information for Studies of Extracellular Vesicles 2018 (MISEV2018): A Position Statement of the International Society for Extracellular Vesicles and Update of the MISEV2014 Guidelines. J. Extracell. Vesicle 2018, 7, 1535750. DOI: 10.1080/20013078.2018.1535750.
  • Yáñez-Mó, M.; Siljander, P. R.-M.; Andreu, Z.; Zavec, A. B.; Borràs, F. E.; Buzas, E. I.; Buzas, K.; Casal, E.; Cappello, F.; Carvalho, J.; et al. Biological Properties of Extracellular Vesicles and Their Physiological Functions. J. Extracell. Vesicles 2015, 4, 27066. DOI: 10.3402/jev.v4.27066.
  • Sohel, M. H. Extracellular/Circulating MicroRNAs: Release Mechanisms, Functions and Challenges. Achiev. Life Sci. 2016, 10, 175–186. DOI: 10.1016/j.als.2016.11.007.
  • Gupta, A.; Pulliam, L. Exosomes as Mediators of Neuroinflammation. J. Neuroinflammation 2014, 11, 68. DOI: 10.1186/1742-2094-11-68.
  • Valadi, H.; Ekström, K.; Bossios, A.; Sjöstrand, M.; Lee, J. J.; Lötvall, J. O. Exosome-Mediated Transfer of mRNAs and microRNAs is a Novel Mechanism of Genetic Exchange between Cells. Nat. Cell Biol. 2007, 9, 654–659. DOI: 10.1038/ncb1596.
  • Jiang, J.; Tang, Q.; Gong, J.; Jiang, W.; Chen, Y.; Zhou, Q.; Aldeen, A.; Wang, S.; Li, C.; Lv, W.; et al. Radiosensitizer EXO-miR-197-3p Inhibits Nasopharyngeal Carcinoma Progression and Radioresistance by Regulating the AKT/mTOR Axis and HSPA5-Mediated Autophagy. Int. J. Biol. Sci. 2022, 18, 1878–1895. DOI: 10.7150/ijbs.69934.
  • Guo, L.; Zhu, Y.; Li, L.; Zhou, S.; Yin, G.; Yu, G.; Cui, H. Breast Cancer Cell-Derived Exosomal miR-20a-5p Promotes the Proliferation and Differentiation of Osteoclasts by Targeting SRCIN1. Cancer Med. 2019, 8, 5687–5701. DOI: 10.1002/cam4.2454.
  • Berkun, Y.; Eisenstein, E.; Ben-Chetrit, E. FMF – Clinical Features, New Treatments and the Role of Genetic Modifiers: A Critical Digest of the 2010–2012 Literature. Clin. Exp. Rheumatol. 2012, 30Suppl 72, S90–S95.
  • Andreu, Z.; Yáñez-Mó, M. Tetraspanins in Extracellular Vesicle Formation and Function. Front. Immunol. 2014, 5, 442. DOI: 10.3389/fimmu.2014.00442.
  • Lin, J.; Li, J.; Huang, B.; Liu, J.; Chen, X.; Chen, X. M.; Xu, Y. M.; Huang, L. F.; Wang, X. Z. Exosomes: Novel Biomarkers for Clinical Diagnosis. ScientificWorldJournal 2015, 2015, 657086–657088. DOI: 10.1155/2015/657086.
  • Simpson, R. J.; Kalra, H.; Mathivanan, S. ExoCarta as a Resource for Exosomal Research. J. Extracell. Vesicles 2012, 1, 18374. DOI: 10.3402/jev.v1i0.18374.
  • Huang, X.; Yuan, T.; Tschannen, M.; Sun, Z.; Jacob, H.; Du, M.; Liang, M.; Dittmar, R. L.; Liu, Y.; Liang, M.; et al. Characterization of Human Plasma-Derived Exosomal RNAs by Deep Sequencing. BMC Genomics 2013, 14, 319. DOI: 10.1186/1471-2164-14-319.
  • Ji, H.; Chen, M.; Greening, D. W.; He, W.; Rai, A.; Zhang, W.; Simpson, R. J. Deep Sequencing of RNA from Three Different Extracellular Vesicle (EV) Subtypes Released from the Human LIM1863 Colon Cancer Cell Line Uncovers Distinct miRNA-Enrichment Signatures. PLOS One 2014, 9, e110314. DOI: 10.1371/journal.pone.0110314.
  • Thind, A.; Wilson, C. Exosomal miRNAs as Cancer Biomarkers and Therapeutic Targets. J. Extracell. Vesicles 2016, 5, 31292. DOI: 10.3402/jev.v5.31292.
  • Min, L.; Zhu, S.; Chen, L.; Liu, X.; Wei, R.; Zhao, L.; Yang, Y.; Zhang, Z.; Kong, G.; Li, P.; et al. Evaluation of Circulating Small Extracellular Vesicles Derived miRNAs as Biomarkers of Early Colon Cancer: A Comparison with Plasma Total miRNAs. J. Extracell. Vesicles 2019, 8, 1643670. DOI: 10.1080/20013078.2019.1643670.
  • Perez-Hernandez, J.; Forner, M. J.; Pinto, C.; Chaves, F. J.; Cortes, R.; Redon, J. Increased Urinary Exosomal MicroRNAs in Patients with Systemic Lupus Erythematosus. PLOS One 2015, 10, e0138618. DOI: 10.1371/journal.pone.0138618.
  • Xu, D.; Song, M.; Chai, C.; Wang, J.; Jin, C.; Wang, X.; Cheng, M.; Yan, S. Exosome-Encapsulated miR-6089 Regulates Inflammatory Response via Targeting TLR4. J. Cell. Physiol. 2019, 234, 1502–1511. DOI: 10.1002/jcp.27014.
  • Silvis, M. J. M.; Fiolet, A. T. L.; Opstal, T. S. J.; Dekker, M.; Suquilanda, D.; Zivkovic, M.; Duyvendak, M.; The, S. H. K.; Timmers, L.; Bax, W. A.; et al. Colchicine Reduces Extracellular Vesicle NLRP3 Inflammasome Protein Levels in Chronic Coronary Disease: A LoDoCo2 Biomarker Substudy. Atherosclerosis 2021, 334, 93–100. DOI: 10.1016/j.atherosclerosis.2021.08.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.