274
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Identification of common genes and pathways underlying imatinib and nilotinib treatment in CML: a Bioinformatics Study

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 664-684 | Received 02 Oct 2023, Accepted 12 Dec 2023, Published online: 20 Dec 2023

References

  • Younes, S.; Ismail, M. A.; Al-Jurf, R.; Ziyada, A.; Nasrallah, G. K.; Abdulrouf, P. V.; Nagy, M.; Zayed, H.; Farrell, T.; Sorio, C.; et al. Management of Chronic Myeloid Leukaemia: Current Treatment Options, Challenges, and Future Strategies. Hematology. 2023, 28, 2196866. DOI: 10.1080/16078454.2023.2196866.
  • Hekmatshoar, Y.; Ozkan, T.; Altinok Gunes, B.; Bozkurt, S.; Karadag, A.; Karabay, A. Z.; Sunguroglu, A. Characterization of Imatinib-Resistant K562 Cell Line Displaying Resistance Mechanisms. Cell Mol. Biol. 2018, 64, 23–30. DOI: 10.14715/cmb/2018.64.6.5
  • Karabay, A. Z.; Koc, A.; Ozkan, T.; Hekmatshoar, Y.; Altinok Gunes, B.; Sunguroglu, A.; Buyukbingol, Z.; Atalay, A.; Aktan, F. Expression Analysis of Akirin-2, NFkappaB-p65 and Beta-Catenin Proteins in Imatinib Resistance of Chronic Myeloid Leukemia. Hematology. 2018, 23, 765–770. DOI: 10.1080/10245332.2018.1488795.
  • Poudel, G.; Tolland, M. G.; Hughes, T. P.; Pagani, I. S. Mechanisms of Resistance and Implications for Treatment Strategies in Chronic Myeloid Leukaemia. Cancers. 2022, 14, 3300. DOI: 10.3390/cancers14143300.
  • Vener, C.; Banzi, R.; Ambrogi, F.; Ferrero, A.; Saglio, G.; Pravettoni, G.; Sant, M. First-Line Imatinib vs. Second- and Third-Generation TKIs for Chronic-Phase CML: A Systematic Review and Meta-Analysis. Blood Adv. 2020, 4, 2723–2735. DOI: 10.1182/bloodadvances.2019001329.
  • Senapati, J.; Sasaki, K.; Issa, G. C.; Lipton, J. H.; Radich, J. P.; Jabbour, E.; Kantarjian, H. M. Management of Chronic Myeloid Leukemia in 2023 – Common Ground and Common Sense. Blood Cancer J. 2023, 13, 58. DOI: 10.1038/s41408-023-00823-9.
  • Larson, R. A.; Hochhaus, A.; Hughes, T. P.; Clark, R. E.; Etienne, G.; Kim, D. W.; Flinn, I. W.; Kurokawa, M.; Moiraghi, B.; Yu, R.; et al. Nilotinib vs Imatinib in Patients with Newly Diagnosed Philadelphia Chromosome-Positive Chronic Myeloid Leukemia in Chronic Phase: ENESTnd 3-Year Follow-up. Leukemia. 2012, 26, 2197–2203. DOI: 10.1038/leu.2012.134.
  • Giles, F. J.; Rosti, G.; Beris, P.; Clark, R. E.; Le Coutre, P.; Mahon, F. X.; Steegmann, J. L.; Valent, P.; Saglio, G. Nilotinib is Superior to Imatinib as First-Line Therapy of Chronic Myeloid Leukemia: The ENESTnd Study. Expert Rev. Hematol. 2010, 3, 665–673. DOI: 10.1586/ehm.10.61.
  • Kantarjian, H. M.; Hughes, T. P.; Larson, R. A.; Kim, D. W.; Issaragrisil, S.; Le Coutre, P.; Etienne, G.; Boquimpani, C.; Pasquini, R.; Clark, R. E.; et al. Long-Term Outcomes with Frontline Nilotinib versus Imatinib in Newly Diagnosed Chronic Myeloid Leukemia in Chronic Phase: ENESTnd 10-Year Analysis. Leukemia. 2021, 35, 440–453. DOI: 10.1038/s41375-020-01111-2.
  • Giles, F. J.; Le Coutre, P. D.; Pinilla-Ibarz, J.; Larson, R. A.; Gattermann, N.; Ottmann, O. G.; Hochhaus, A.; Radich, J. P.; Saglio, G.; Hughes, T. P.; et al. Nilotinib in Imatinib-Resistant or Imatinib-Intolerant Patients with Chronic Myeloid Leukemia in Chronic Phase: 48-Month Follow-up Results of a Phase II Study. Leukemia. 2013, 27, 907–913. DOI: 10.1038/leu.2012.181.
  • Camgoz, A.; Gencer, E. B.; Ural, A. U.; Baran, Y. Mechanisms Responsible for Nilotinib Resistance in Human Chronic Myeloid Leukemia Cells and Reversal of Resistance. Leuk. Lymphoma. 2013, 54, 1279–1287. DOI: 10.3109/10428194.2012.737919.
  • Huang da, W.; Sherman, B. T.; Lempicki, R. A. Systematic and Integrative Analysis of Large Gene Lists Using DAVID Bioinformatics Resources. Nat. Protoc. 2009, 4, 44–57. DOI: 10.1038/nprot.2008.211.
  • Karadağ Gürel, A.; Gürel, S. To Detect Potential Pathways and Target Genes in Infantile Pompe Patients Using Computational Analysis. Bioimpacts. 2022, 12, 89–105. DOI: 10.34172/bi.2022.23467.
  • García-Gutiérrez, V.; Hernández-Boluda, J. C. Tyrosine Kinase Inhibitors Available for Chronic Myeloid Leukemia: Efficacy and Safety. Front Oncol. 2019, 9, 603. DOI: 10.3389/fonc.2019.00603.
  • Ryu, H. S. Abstract P1-10-19: Tyrosine Aminoacyl-tRNA Synthetase Sensitizes Breast Cancer to Chemotherapy Througha Necroptosis-Mediated Mechanism: High-Throughput Proteomics and Machine Learningalgorithm Based Feature Selection Analyses. Cancer Res. 2020, 80, P1-10-19–P1-10-19. DOI: 10.1158/1538-7445.SABCS19-P1-10-19.
  • Shi, Y.; Liu, Z.; Zhang, Q.; Vallee, I.; Mo, Z.; Kishi, S.; Yang, X.-L. Phosphorylation of Seryl-tRNA Synthetase by ATM/ATR is Essential for Hypoxia-Induced Angiogenesis. PLOS Biol. 2020, 18, e3000991. DOI: 10.1371/journal.pbio.3000991.
  • Bing, F.; Zhao, Y. Screening of Biomarkers for Prediction of Response to and Prognosis after Chemotherapy for Breast Cancers. Onco. Targets Ther. 2016, 9, 2593–2600. DOI: 10.2147/OTT.S92350.
  • Ahmad, H. M.; Muiwo, P.; Ramachandran, S. S.; Pandey, P.; Gupta, Y. K.; Kumar, L.; Kulshreshtha, R.; Bhattacharya, A. miR-22 Regulates Expression of Oncogenic Neuro-Epithelial Transforming Gene 1, NET 1. FEBS J. 2014, 281, 3904–3919. DOI: 10.1111/febs.12926.
  • Prod’homme, T.; Drénou, B.; De Ruyffelaere, C.; Barbieri, G.; Wiszniewski, W.; Bastard, C.; Charron, D.; Alcaide-Loridan, C. Defective Class II Transactivator Expression in a B Lymphoma Cell Line. Leukemia. 2004, 18, 832–840. DOI: 10.1038/sj.leu.2403315.
  • Khan, K.; Gogonea, V.; Fox, P. L. Aminoacyl-tRNA Synthetases of the Multi-tRNA Synthetase Complex and Their Role in Tumorigenesis. Transl. Oncol. 2022, 19, 101392. DOI: 10.1016/j.tranon.2022.101392.
  • Wang, J.; Vallee, I.; Dutta, A.; Wang, Y.; Mo, Z.; Liu, Z.; Cui, H.; Su, A. I.; Yang, X.-L. Multi-Omics Database Analysis of Aminoacyl-tRNA Synthetases in Cancer. Genes. 2020, 11, 1384. DOI: 10.3390/genes11111384.
  • Tukalo, M.; Kondratov, A.; Yaremchuk, A.; Gudzera, O. Aminoacyl-tRNA Synthetases as Biomarkers for Cancer Diagnostics. Biopolym. Cell. 2015.Suppl. 5, p32–32.
  • Kwon, N. H.; Fox, P. L.; Kim, S. Aminoacyl-tRNA Synthetases as Therapeutic Targets. Nat. Rev. Drug Discov. 2019, 18, 629–650. DOI: 10.1038/s41573-019-0026-3.
  • Ikromov, O.; Alkamal, I.; Magheli, A.; Ratert, N.; Sendeski, M.; Miller, K.; Krause, H.; Kempkensteffen, C. Functional Epigenetic Analysis of Prostate Carcinoma: A Role for Seryl-tRNA Synthetase? J. Biomark. 2014, 2014, 362164–362110. DOI: 10.1155/2014/362164.
  • Zhao, J.; Bai, H.; Li, X.; Yan, J.; Zou, G.; Wang, L.; Li, X.; Liu, Z.; Xiang, R.; Yang, X.-L. Glucose-Sensitive Acetylation of Seryl tRNA Synthetase Regulates Lipid Synthesis in Breast Cancer. Signal. Transduct. Target Ther. 2021, 6, 303.
  • Khosh Kish, E.; Gamallat, Y.; Choudhry, M.; Ghosh, S.; Seyedi, S.; Bismar, T. A. Glycyl-tRNA Synthetase (GARS) Expression is Associated with Prostate Cancer Progression and Its Inhibition Decreases Migration, and Invasion in Vitro. Int. J. Mol. Sci. 2023, 24, 4260. DOI: 10.3390/ijms24054260.
  • Wang, J.; Yang, B.; Wang, D.; Han, R.; Bi, Z.; Lin, L. GARS is Implicated in Poor Survival and Immune Infiltration of Hepatocellular Carcinoma. Cell Signal. 2022, 94, 110302. DOI: 10.1016/j.cellsig.2022.110302.
  • Chen, C.-J.; Chou, C.-Y.; Shu, K.-H.; Chen, H.-C.; Wang, M.-C.; Chang, C.-C.; Hsu, B.-G.; Wu, M.-S.; Yang, Y.-L.; Liao, W.-L.; et al. Discovery of Novel Protein Biomarkers in Urine for Diagnosis of Urothelial Cancer Using iTRAQ Proteomics. J. Proteome Res. 2021, 20, 2953–2963. DOI: 10.1021/acs.jproteome.1c00164.
  • Li, X.; Sun, H.; Liu, Q.; Liu, Y.; Hou, Y.; Jin, W. Conjoint Analysis of Circulating Tumor Cells and Solid Tumors for Exploring Potential Prognostic Markers and Constructing a Robust Novel Predictive Signature for Breast Cancer. Cancer Cell Int. 2021, 21, 708. DOI: 10.1186/s12935-021-02415-8.
  • Hayano, M.; Yang, W.; Corn, C.; Pagano, N.; Stockwell, B. Loss of Cysteinyl-tRNA Synthetase (CARS) Induces the Transsulfuration Pathway and Inhibits Ferroptosis Induced by Cystine Deprivation. Cell Death Differ. 2016, 23, 270–278. DOI: 10.1038/cdd.2015.93.
  • Zhang, W.; Lin, X.; Chen, S. Cysteinyl-tRNA Synthetase 1 Promotes Ferroptosis-Induced Cell Death via Regulating GPX4 Expression. J. Oncol. 2022, 2022, 4849174–4849116. DOI: 10.1155/2022/4849174.
  • Di, X.; Jin, X.; Ma, H.; Wang, R.; Cong, S.; Tian, C.; Liu, J.; Zhao, M.; Li, R.; Wang, K. The Oncogene IARS2 Promotes Non-Small Cell Lung Cancer Tumorigenesis by Activating the AKT/MTOR Pathway. Front. Oncol. 2019, 9, 393. DOI: 10.3389/fonc.2019.00393.
  • Zhang, Z.; Yu, H.; Yao, W.; Zhu, N.; Miao, R.; Liu, Z.; Song, X.; Xue, C.; Cai, C.; Cheng, M.; et al. RRP9 Promotes Gemcitabine Resistance in Pancreatic Cancer via Activating AKT Signaling Pathway. Cell Commun. Signal. 2022, 20, 188. DOI: 10.1186/s12964-022-00974-5.
  • Guerzoni, C.; Bardini, M.; Mariani, S. A.; Ferrari-Amorotti, G.; Neviani, P.; Panno, M. L.; Zhang, Y.; Martinez, R.; Perrotti, D.; Calabretta, B. Inducible Activation of CEBPB, a Gene Negatively Regulated by BCR/ABL, Inhibits Proliferation and Promotes Differentiation of BCR/ABL-Expressing Cells. Blood. 2006, 107, 4080–4089. DOI: 10.1182/blood-2005-08-3181.
  • Xu, C.; Shen, Y.; Shi, Y.; Zhang, M.; Zhou, L. Eukaryotic Translation Initiation Factor 3 Subunit B Promotes Head and Neck Cancer via CEBPB Translation. Cancer Cell Int. 2022, 22, 161. DOI: 10.1186/s12935-022-02578-y.
  • Wei, C.; Wang, B.; Chen, Z.-H.; Xiao, H.; Tang, L.; Guan, J.-F.; Yuan, R.-F.; Yu, X.; Hu, Z.-G.; Wu, H.-J.; et al. Validating RRP12 Expression and Its Prognostic Significance in HCC Based on Data Mining and Bioinformatics Methods. Front. Oncol. 2022, 12, 812009. DOI: 10.3389/fonc.2022.812009.
  • Choi, Y. J.; Lee, H. W.; Lee, Y. S.; Shim, D. M.; Seo, S. W. RRP12 is a Crucial Nucleolar Protein That Regulates p53 Activity in Osteosarcoma Cells. Tumour Biol. 2016, 37, 4351–4358. DOI: 10.1007/s13277-015-4062-2.
  • Hu, M.; Fu, X.; Si, Z.; Li, C.; Sun, J.; Du, X.; Zhang, H. Identification of Differently Expressed Genes Associated with Prognosis and Growth in Colon Adenocarcinoma Based on Integrated Bioinformatics Analysis. Front. Genet. 2019, 10, 1245. DOI: 10.3389/fgene.2019.01245.
  • Li, K. K.; Mao, C. Y.; Zhang, J. G.; Ma, Q.; Wang, Y. J.; Liu, X. H.; Bao, T.; Guo, W. Overexpression of U Three Protein 14a (UTP14a) is Associated with Poor Prognosis of Esophageal Squamous Cell Carcinoma. Thorac. Cancer. 2019, 10, 2071–2080. DOI: 10.1111/1759-7714.13176.
  • Li, K.-K.; Mao, C.-Y.; Ma, Q.; Bao, T.; Wang, Y.-J.; Guo, W.; Zhao, X.-L. U Three Protein 14a (UTP14A) Promotes Tumour Proliferation and Metastasis via the PERK/eIF2a/GRP78 Signalling Pathway in Oesophageal Squamous Cell Carcinoma. J. Cancer. 2021, 12, 134–140. DOI: 10.7150/jca.44649.
  • Ren, P.; Sun, X.; Zhang, C.; Wang, L.; Xing, B.; Du, X. Human UTP14a Promotes Angiogenesis through Upregulating PDGFA Expression in Colorectal Cancer. Biochem. Biophys. Res. Commun. 2019, 512, 871–876. DOI: 10.1016/j.bbrc.2019.03.142.
  • Kai, J. D.; Cheng, L. H.; Li, B. F.; Kang, K.; Xiong, F.; Fu, J. C.; Wang, S. MYH9 is a Novel Cancer Stem Cell Marker and Prognostic Indicator in Esophageal Cancer That Promotes Oncogenesis through the PI3K/AKT/mTOR Axis. Cell Biol. Int. 2022, 46, 2085–2094. DOI: 10.1002/cbin.11894.
  • Ye, G.; Yang, Q.; Lei, X.; Zhu, X.; Li, F.; He, J.; Chen, H.; Ling, R.; Zhang, H.; Lin, T.; et al. Nuclear MYH9-Induced CTNNB1 Transcription, Targeted by Staurosporin, Promotes Gastric Cancer Cell Anoikis Resistance and Metastasis. Theranostics. 2020, 10, 7545–7560. DOI: 10.7150/thno.46001.
  • Xu, Z.; Liu, M.; Wang, J.; Liu, K.; Xu, L.; Fan, D.; Zhang, H.; Hu, W.; Wei, D.; Wang, J. Single-Cell RNA-Sequencing Analysis Reveals MYH9 Promotes Renal Cell Carcinoma Development and Sunitinib Resistance via AKT Signaling Pathway. Cell Death Discov. 2022, 8, 125. DOI: 10.1038/s41420-022-00933-6.
  • Lv, M. MYL5 as a Novel Prognostic Marker is Associated with Immune Infiltrating in Breast Cancer: A Preliminary Study. Breast J. 2023, 2023, 9508632–9508621. DOI: 10.1155/2023/9508632.
  • Rajamani, B. M.; Illangeswaran, R. S. S.; Benjamin, E. S. B.; Balakrishnan, B.; Jebanesan, D. Z. P.; Das, S.; Pai, A. A.; Vidhyadharan, R. T.; Mohan, A.; Karathedath, S.; et al. Modulating retinoid-X-Receptor Alpha (RXRA) Expression Sensitizes Chronic Myeloid Leukemia Cells to Imatinib in Vitro and Reduces Disease Burden in Vivo. Front. Pharmacol. 2023, 14, 1187066. DOI: 10.3389/fphar.2023.1187066.
  • Rodriguez, M.; Potter, D. A. CYP1A1 Regulates Breast Cancer Proliferation and Survival. Mol. Cancer Res. 2013, 11, 780–792. DOI: 10.1158/1541-7786.MCR-12-0675.
  • Androutsopoulos, V. P.; Spyrou, I.; Ploumidis, A.; Papalampros, A. E.; Kyriakakis, M.; Delakas, D.; Spandidos, D. A.; Tsatsakis, A. M. Expression Profile of CYP1A1 and CYP1B1 Enzymes in Colon and Bladder Tumors. PLOS One. 2013, 8, e82487. DOI: 10.1371/journal.pone.0082487.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.