1,002
Views
123
CrossRef citations to date
0
Altmetric
Original Articles

Imidacloprid Induces Neurobehavioral Deficits and Increases Expression of Glial Fibrillary Acidic Protein in the Motor Cortex and Hippocampus in Offspring Rats Following in Utero Exposure

, , , , , & show all
Pages 119-130 | Received 30 Apr 2007, Accepted 17 Jul 2007, Published online: 01 Mar 2011

REFERENCES

  • Abdel-Rahman, A., Shetty, A. K., and Abou-Donia, M. B., 2001. Subchronic dermal application of DEET and permethrin to adult rats alone or in combination causes diffuse neuronal cell death and cytoskeletal abnormalities in the cerebral cortex and hippocampus and Purkinje neuron loss in the cerebellum, Exp. Neurol. 172 (2001), pp. 153–171.
  • Abdel-Rahman, A., Dechkovskaia, A., Mehta-Simmons, H., Guan, X., Khan, W., and Abou-Donia, M., 2003. Increased expression of glial fibrillary acidic protein in cerebellum and hippocampus: Differential effects on neonatal brain regional acetylcholinesterase following maternal exposure to combined chlorpyrifos and nicotine, J. Toxicol. Environ. Health A 66 (2003), pp. 2047–2066.
  • Abdel-Rahman, A., Dechkovskaia, A. M., Sutton, J. M., Chen, W., Guan, X., Khan, W. A., and Abou-Donia, M., 2005. Maternal exposure of rats to nicotine via infusion produces neurobehavioral deficits and elevated expression of glial fibrillary acidic protein in cerebellum and CA1 subfield in the offspring at puberty, Toxicology 209 (2005), pp. 245–261.
  • Abou-Donia, M. B., Goldstein, L. B., Jones, K. H., Abdel-Rehman, A. A., Damodran, T. V., Dechkovskaia, A. M., Bullman, S. L., Amir, B. E., and Khan, W. A., 2001a. Effect of daily dermal application of DEET and permethrin, alone and in combination, on sensorimotor performance, blood brain barrier, and blood-tests barrier in rat, J. Toxicol. Environ. Health A 62 (2001a), pp. 101–119.
  • Abou-Donia, M. B., Goldstein, L. B., Jones, K. H., Abdel-Rehman, A. A., Damodran, T. V., Dechkovskaia, A. M., Bullman, S. L., Amir, B. E., and Khan, W. A., 2001b. Locomotor and sensorimotor performance deficit in rats following exposure to pyridostigmine bromide, DEET, and permethrin, alone and in combination, Toxicol. Sci. 60 (2001b), pp. 305–314.
  • Abou-Donia, M. B., Dechkovskaia, A. M., Goldstein, L. B., Abdel-Rahman, A. A., Bulman, S. L., and Khan, W. A., 2004. Co-exposure to pyridostigmine bromide, DEET, and/or permethrin causes deficit and alterations in brain acetylcholinesterase activity, Pharmacol. Biochem. Behav. 77 (2004), pp. 253–262.
  • Abou-Donia, M. B., Khan, W. A., Dechkovskaia, A. M., Goldstein, L. B., Bullman, S. L., and Abdel-Rahman, A. A., 2006. In utero exposure to nicotine and chlorpyrifos, alone and in combination produced persistent sensorimotor deficits and Purkinje neuronal loss in the cerebellum of adult offspring rats, Arch. Toxicol. 80 (2006), pp. 620–631.
  • Ahlsen, G., Rosengren, L., Belfrage, M., Palm, A., Haglid, K., Hamberger, A., and Gillberg, C., 1993. Glial fibrillary acidic protein in the cerebrospinal fluid of children with autism and other neuropsychiatric disorders, Biol. Psychiatry 15 (1993), pp. 734–743.
  • Albuquerque, E. X., Pereira, E. F., Alkondon, M., Schrattenhoiz, A., and Maelicke, A., 1997. Nicotine acetylcholine receptors on hippocampal neurons: Distribution on the neuronal surface and modulation of receptor activity, Receptor Signal Transduct. Res. 17 (1997), pp. 243–266.
  • Andersen, C. S., Andersen, A. B., and Finger, S, 1991. Neurological correlates of unilateral and bilateral “strokes” of the middle cerebral artery in the rat, Physiol. Behav. 50 (1991), pp. 263–269.
  • Atarashi, R., Sakaguchi, S., Shigematsu, K., Arima, K., Okimura, N., Yaguchi, N., Li, A., Kopacek, J., and Katamine, S., 2001. Abnormal activation of glial cells in the brains of prion protein-deficient mice ectopically expressing prion protein-like protein, PrPLP/Dp1, Mol. Med. 7 (2001), pp. 803–809.
  • Berkowitz, G. S., Wetmur, J. G., Birman-deych, E., Obel, J., Lapinski, R. H., Godbold, J. H., Holzman, I. R., and Wolff, M. S., 2004. In utero pesticide exposure, maternal paraoxanase activity, and head circumference, Environ. Health Perspect. 112 (2004), pp. 388–391.
  • Bigbee, J. W., Sharma, K. V., Chan, E. L. P., and Bogler, O., 2000. Evidence for the direct role of acetylcholinesterase in neurite outgrowth in primary dorsal root ganglion neurons, Brain Res. 861 (2000), pp. 354–362.
  • Buckingham, S. D., Lapied, B., Corronc, H. L., Grolleau, F., and Sattelle, D. B., 1997. Imidacloprid actions on insect neuronal acetylcholine receptors, J. Exp. Biol. 200 (1997), pp. 2685–2692.
  • Butrum, D., and Silverstein, F. S., 1993. Excitotic injury stimulates glial fibrillary acidic protein mRNA expression in perinatal rat brain, Exp. Neurol. 121 (1993), pp. 127–132.
  • Chao, S.-L., and Casida, J. E., 1997. Interaction of imidacloprid metabolites and analogs with nicotinic acetylcholine receptor of mouse brain in relation to toxicity, Pestic. Biochem. Physiol. 58 (1997), pp. 77–88.
  • Clarke, C., Clarke, K., Muneyyirci, J., Azmitia, E., and Whitaker-Azmitia, P. M., 1996. Prenatal cocaine delays astroglial maturation: Immunodensitometery shows increased markers of immaturity (vimentin and GAP-43) and decreased proliferation and production of the growth factor S-100, Dev. Brain Res. 91 (1996), pp. 268–273.
  • Cotti, C., and Clementi, F., 2004. Neuronal nicotinic receptors: From structure to pathology, Prog. Neurobiol. 74 (2004), pp. 363–396.
  • Coyle, J. T., Price, D. L., and DeLong, M. R., 1993. Alzheimer's disease; A disorder of cortical cholinergic innervation, Science 219 (1993), pp. 1184–1190.
  • Dahl, D., Rueger, D.C., Bignami, A., Weber, K., and Osborn, M., 1981. Vimentin, the 57000 Daltons protein of fibroblast filaments is the major cytoskeletal component in immature glia, Eur. J. Cell Biol. 24 (1981), pp. 191–196.
  • Dani, J. A., and Biasi, M., 2001. Cellular mechanisms of nicotine addiction, Pharmacol. Biochem. Behav. 70 (2001), pp. 439–446.
  • Day, T., and Greenfield, S. A., 2003. A peptide derived from acetylcholinesterase induces neuronal cell death: Characterization of possible mechanisms, Exp. Brain Res. 153 (2003), pp. 334–342.
  • Ellman, G. L., Courtney, K. D., Andres, V., and Featherstone, R., 1961. A new and rapid colorimetric determination of acetylcholinesterase activity, Biochem. Pharmacol. 7 (1961), pp. 88–95.
  • Faivre-Sarrailh, C. A., Rami, A., Fages, C., and Tardy, M., 1991. Effect of thyroid deficiency on GFAP and GFAP-mRNA in the cerebellum and hippocampal formation of the developing rat, Glia 4 (1991), pp. 276–284.
  • Fattore, L., Puddu, M.C., Picciau, S., Cappai, A., Fratta, W., Serra, G. P., and Spiga, S., 2002. Astroglial in vivo response to cocaine in mouse dentate gyrus: A quantitative and qualitative analysis by confocal microscopy, Neuroscience 110 (2002), pp. 1–6.
  • Garcia, S. J., Seidler, F. J., Diao, D., and Slotkin, T. A., 2002. Chlorpyrifos targets developing glia: effects on glial fibirillary acidic protein, Dev. Brain Res. 133 (2002), pp. 151–161.
  • Girod, R., Crabtree, G., Ernstrom, G, Ramirez-Latorre, J., McGehee, D., Turner, J., and Role, L., 1999. Heteromeric complexes of alpha 5 and /or alpha 7 subunits. Effects of calcium and potential role in nicotine-induced persynaptic facilitation, Ann. NY Acad, Sci. 868 (1999), pp. 578–590.
  • Giulian, D., Young, D. G., Woodward, J., Brown, D. C., and Lachman, L. B., 1988. Interleukin-1 is an astroglial growth factor in the developing brain, J. Neurosci. 8 (1988), pp. 709–712.
  • Goldstein, L. B., 1993. Beam-walking in rats: Measurement of motor recovery after injury to the cerebral cortex, Neurosci. Protocol. 10 (1993), pp. 1–13.
  • Guizzetti, M., Costa, P., Peters, J., and Costa, L. G., 1996. Acetylcholine as a mitogen: Muscarinic receptor-mediated proliferation of rat astrocytes and human astrocytoma cells, Eur. J. Pharmacol. 297 (1996), pp. 265–273.
  • Hanke, W., and Jurewicz, J., 2004. The risk of adverse reproductive and developmental disorders to occupational pesticide exposure: An overview of current epidemiological evidence, Int. J. Occup. Med. Environ. Health 17 (2004), pp. 223–243.
  • Hsu, S. M., Raine, L., and Fanger, H., 1981. Use of avidin-biotin peroxidase (ABC) in immunoperoxidase techniques: A comparison between ABC and unlabeled antibody (PAP) procedures, J. Histochem. Cytochem. 29 (1981), pp. 577–580.
  • Huff, R. A., and Abou-Donia, M. B., 1994. Cis-Methyldioxolane specifically recognizes the m2 muscarinic receptor, J. Neurochem. 62 (1994), pp. 388–391.
  • Huff, R. A., Corcoran, J. J., Anderson, J. K., and Abou-Donia, M. B., 1994. Chlorpyrifos oxon binds to muscarinic receptors and inhibits cAMP accumulation in rat striatum, J. Pharmacol. Exp. Ther. 269 (1994), pp. 329–335.
  • Iversen, S. D., 1997. Behavioral evaluation of cholinergic drugs, Life Sci. 60 (1997), pp. 1145–1152.
  • Jacobson, J. L., and Jacobson, S. W., 2002. Association of prenatal exposure to environmental contaminants with intellectual functions in childhood, J. Toxicol. Clin. Toxicol. 40 (2002), pp. 467–475.
  • Kagabu, S., 1997. Chloronicotinyl insecticides—Discovery, application and future perspective, Rev. Toxicol. 1 (1997), pp. 75–129, .
  • Khan, W. A., Dechkovskaia, A. M., Herrick, E. A., Jones, K. H., and Abou-Donia, M. B., 2000. Acute sarin exposure causes differential regulation of choline acetyltransferase, acetylcholinesterase and acetylcholine receptors in the central nervous system of the rat, Toxicol. Sci. 57 (2000), pp. 112–120.
  • Kristjansdottir, R., Uvebrant, P., and Rosengren, L., 2001. Glial fibrillary acidic protein and neurofilament in the children with cerebral white matter abnormalities, Neuropediatrics 32 (2001), pp. 307–312.
  • Landsdell, S. J., and Millar, N. S., 2000. The influence of nicotinic receptor subunit composition upon agonist, alpha-bungarotoxin and insecticide (imidacloprid) binding affinity, Neuropharmacology 14 (2000), pp. 671–679.
  • Laudenbach, V., Medja, F., Zoli, M., Francesco, M., Evrard, R. P., Changeux, J. C., and Gressens, P., 2002. Selective activation of central subtypes of the nicotinic acetylcholine receptor has opposite effects on neonatal excitotoxic brain injuries, FASEB J. 16 (2002), pp. 423–427.
  • Levey, A. I., Edmunds, S. M., Koliatsos, V., Wiley, R. G., and Heiiman, C. J., 1995. Expression of m1–m4 muscarinic acetylcholine receptor proteins in rat hippocampus and regulation by cholinergic innervation, J. Neurosci 15 (1995), pp. 4077–4092.
  • Liedtke, W., Edelman, W., Bieri, P. L., Chin, F. C., Cowen, N. J., Kucherlpati, R., and Raine, C. S., 1996. GFAP is necessary for the integrity of CNS white matter architecture and long-term maintenance of myelination, Neuron 17 (1996), pp. 607–615.
  • Liptakova, S, Velisek, L., Veliskova, H., and Moshe, S. L., 2000. Effect of ganaxolone on flurothyl seizures in developing rats, Epilepsia 41 (2000), pp. 788–793.
  • Little, A. R., Benkovic, S. A., Miller, D. B., and O'Callaghan, J. P., 2002. Chemically induced neuronal damage and gliosis: Enhanced expression of the proinflammatory chemokine, monocyte chemoattractant protein MCP-1, without a corresponding increase in proinflammatory cytokines, Neuroscience 115 (2002), pp. 307–320.
  • Liu, M. Y., and Casida, J. E., 1993. High affinity binding of [3H]-imidacloprid in the insect acetylcholine receptor, Pestic. Biochem. Physiol. 46 (1993), pp. 40–46.
  • Makri, A., Goveia, M., Balbus, J., and Parkin, R., 2004. Children's susceptibility to chemicals: a review by developmental stage, J. Toxicol. Environ. Health B 7 (2004), pp. 417–443.
  • Matsuda, K., Buckingham, S. D., Klier, D., Rauh, J. J., Marta, G., and Sattelle, D. B., 2001. Neonicotinoides: Insecticides acting on insect nicotinic acetylcholine receptors, Trends Pharmacol. Sci. 22 (2001), pp. 573–580.
  • Narayanan, U., Birru, S., Vaglenova, J., and Breese, C. R., 2002. Nicotinic receptor expression following nicotine exposure via maternal milk, Neuroreport 13 (2002), pp. 961–963.
  • O'Callaghan, J. P., 1993. Quantitative features of reactive gliosis following toxicant-induced damage of the CNS, Ann. NY Acad. Sci. 679 (1993), pp. 195–210.
  • Penky, M., Stannes, K., Eliasson, C., Betsholtz, C., and Janigro, D., 1998. Impaired induction of blood–brain barrier properties in aortic endothelial cells by astrocytes from GFAP-deficient mice, Glia. 22 (1998), pp. 390–400.
  • Proenca, P., Teixeira, H., Castanheira, F., Pinheiro, J., Monsanto, P. V., Marques, E. P., and Viera, D. N., 2005. Two fatal intoxication cases with imidacloprid: LC/MS analysis, Forens. Sci. Int. 153 (2005), pp. 75–80.
  • Quirion, R., Wilson, A., Rowe, W., Aubert, I., Richard, J., Doods, H., Parent, A., White, N., and Meaney, M. J., 1995. Facilitation of acetylcholine release and cognitive performance by an m2-muscarinic receptor antagonist in aged memory impaired, J. Neurosci. 15 (1995), pp. 1455–1462.
  • Ridet, J. L., Malhotra, S. K., Privat, A., and Gage, F. H., 1997. Reactive astrocytes: Cellular and molecular cues to biological functions, Trends Neurosci. 20 (1997), pp. 570–577.
  • Rouse, S. T., Edmunds, S. M., Yi, H., Gilmor, M. L., and Levey, A. I., 2000. Localization of M2muscarinic acetylcholine receptor protein in cholinergic and noncholinergic terminals in rat hippocampus, Neurosci. Lett. 284 (2000), pp. 182–186.
  • Sberna, G., Saez-Valero, J., Li, C. C., Cash, C., Beyreuther, K., Masters, C. L., McLean, C. A., and Small, D. H., 1998. Acetylcholinesterase is increased in the brains of transgenic mice expressing the C-terminal fragment (CT100) of the beta-amyloid protein precursor of Alzheimer's disease, J. Neurochem. 71 (1998), pp. 723–731.
  • Seeger, T., Fedorova, I., Zheng, F., Miyakawa, T., Koustova, E., Gomeza, J., Basile, A. S., Alzheimer, C., and Wess, J., 2004. M2 muscarinic acetylcholine receptor knock-out mice show deficits in behavioral flexibility, working memory, and hippocampal plasticity, J. Neurosci. 22 (2004), pp. 1709–1717.
  • Shibuki, K., Gomi, H., Chen, L., Bao, S., Kim, J. J., Wakatsuki, H., Fujisaki, T., Fujimoto, K., Katoh, A., Ikeda, T., Chen, C., Thompson, R. F., and Itohara, S., 1996. Deficient cerebellar long-term depression, impaired eyeblink conditioning, and normal motor coordination in GFAP mutant mice, Neuron 16 (1996), pp. 587–599.
  • Singh, V. K., Warren, R., Averett, R., and Ghaziuddin, M., 1997. Circulating autoantibodies to neuronal and glial filament proteins in autism, Pediatr. Neurol. 17 (1997), pp. 88–90.
  • Slawecki, C. J., Thomas, J. D., Riley, E. P., and Ehlers, C. L., 2000. Neonatal nicotine exposure alters hippocampal EEG and event-related potentials (ERPs) in rats, Pharmacol. Biochem. Behav. 65 (2000), pp. 711–718.
  • Slotkin, T. A., Tate, C. A., Cousins, M. M., and Seidler, F. J., 2004. Administration of nicotine to adolescent rats evokes regionally selective upregulation of CNS alpha nicotine acetylcholine receptors, Brain Res. 1030 (2004), pp. 159–163.
  • Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, L. H., Provenzo, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., and Klenk, D. C., 1985. Measurement of protein using bicinchoninic acid, Anal. Biochem. 150 (1985), pp. 76–85.
  • Sternfeld, M., Ming, G., Song, K., Sela, R., Timberg, M., Poo, , and Soreq, H., 1998. Acetylcholinesterase enhances neurite growth and synapse development through alternative contributions of its hydrolytic capacity, core protein, and variable C termini, J. Neurosci. 18 (1998), pp. 1240–1249.
  • Teaktong, T., Piggott, M. A., McKeith, I. G., Perry, R. H., Ballrad, C. G., and Perry, E. K., 2005. Muscarinic M2 and M4 receptors in anterior cingulated cortex: Relation to neuropsychiatric symptoms in dementia with Lewy bodies, Behav. Brain Res. 161 (2005), pp. 299–305.
  • Tomizawa, M., and Yamamoto, I., 1993. Structure–activity relationship of nicotinoids and imidacloprid analogs, J. Pestic. Sci. 18 (1993), pp. 91–98.
  • Tomizawa, M., and Casida, J. E., 2000. Imidacloprid, thiacloprid, and their imine derivatives up-regulate the α4β2 nicotinic acetylcholine receptor in M10 cells, Toxicol. Appl. Pharmacol. 169 (2000), pp. 114–120.
  • Tomizawa, M., and Casida, J. E., 2003. Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors, Annu. Rev. Entomol. 48 (2003), pp. 339–364.
  • Tomizawa, M., Lee, D. L., and Casida, J. E., 2000. Neonicotinoid insecticides: Molecular features conferring selectivity for insect versus mammalian nicotinic receptors, J. Agric. Food Chem. 48 (2000), pp. 6016–6024.
  • Tomizawa, M., Lee, D. L., and Casida, J. E., 2005. Neonicotinoid insecticide toxicology: Mechanisms of selective action, Annu. Rev. Pharmacol. Toxicol. 45 (2005), pp. 247–268.
  • Tsuneishi, S., Takada, S., Motoike, T., Ohashi, T., Sano, K., and Nakamura, H., 1991. Effects of dexamethasone on the expression of myelin basic protein, proteolipid protein, and glial fibrillary acidic protein genes in developing rat brain, Dev. Brain Res. 61 (1991), pp. 117–123.
  • Wess, J., 1996. Molecular biology of muscarinic acetylcholine receptors, Crit. Rev. Neurobiol. 10 (1996), pp. 69–99.
  • Wu, I. W., Lin, J. L., and Cheng, E. T., 2001. Acute poisoning with the neonicotinoid insecticide imidacloprid in N-methyl pyrrolidone, J. Toxicol. Clin. Toxicol. 39 (2001), pp. 617–621.
  • Yamamoto, I., Tomizawa, M., Saito, T., Miyamoto, T., Walcott, E. C., and Sumikawa, K., 1998. Structural factors contributing to insecticidal and selective actions of neonicotinoids, Arch. Insect. Biochem. Physiol. 37 (1998), pp. 24–32.
  • Yang, L., Heng-Yi, H., and Zhang, X. J., 2002. Increased expression of intranuclear AChE involved in apoptosis of SK-N-SH cells, Neurosci. Res. 42 (2002), pp. 261–268.
  • Yonemori, F., Yamaguchi, T., Yamada, H., and Tamura, A., 1998. Evaluation of a motor deficit after chronic focal cerebral ischemia in rats, J. Cereb. Blood Flow Metab. 18 (1998), pp. 1099–1106.
  • Zbarsky, V., Thomas, J., and Greenfield, S. A., 2004. Bioactivity of a peptide derived from acetylcholinesterase: involvement of an ivermectin-sensitive site on the alpha 7 nicotinic receptor, Neurobiol. Dis. 16 (2004), pp. 283–289.
  • Zhang, A., Kaiser, H., Maienfisch, P., and Casida, J. E., 2000. Insect nicotinic acetylcholine receptor: Conserved neonicotinoid specificity of [3H]imidacloprid binding site, J. Neurochem. 75 (2000), pp. 1294–1303.
  • Zhang, W., Basile, A. S., Gomeza, J., Volpicelli, L. A., Levey, A. I., and Wess, J., 2002. Characterization of central inhibitory muscarinic autoreceptors by the use of muscarinic acetylcholine receptor knock-out mice, J. Neurosci. 22 (2002), pp. 1709–1717.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.