383
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Development of a Screening System for the Detection of Chemically Induced DNA Methylation Alterations in a Zebrafish Liver Cell Line

, , &

REFERENCES

  • Alders, M., Bliek, J., van der Lip, K., van der Bogaard, R., and Mannens, M. 2009. Determination of KCNQ1OT1 and H19 methylation levels in BWS and SRS patients using methylation-sensitive high-resolution melting analysis. Eur. J. Hum. Genet. 17: 467–473.
  • Anway, M. D., Cupp, A. S., Uzumcu, M., and Skinner, M. K. 2005. Epigenetic transgenerational actions of endocrine disruptors and mate fertility. Science 308: 1466–1469.
  • Baccarelli, A., and Bollati, V. 2009. Epigenetics and environmental chemicals. Curr. Opin. Pediatr. 21: 243–251.
  • Bollati, V., and Baccarelli, A. 2010. Environmental epigenetics. Heredity 105: 105–112.
  • Chen, H., Li, S. F., Liu, J., Diwan, B. A., Barrett, J. C., and Waalkes, M. P. 2004. Chronic inorganic arsenic exposure induces hepatic global and individual gene hypomethylation: Implications for arsenic hepatocarcinogenesis. Carcinogenesis 25: 1779–1786.
  • Christman, J. K. 2002. 5-Azacytidine and 5-aza-2’-deoxycytidine as inhibitors of DNA methylation: Mechanistic studies and their implications for cancer therapy. Oncogene 21: 5483–5495.
  • Chu, D. C., Chuang, C. K., Fu, J. B., Huang, H. S., Tseng, C. P., and Sun, C. F. 2002. The use of real-time quantitative polymerase chain reaction to detect hypermethylation of the CpG islands in the promoter region flanking the GSTP1 gene to diagnose prostate carcinoma. J. Urol. 167:1854–1858.
  • Davis, A., Murphy, C., Rosenstein, M., Wiegers, T., and Mattingly, C. 2008. The Comparative Toxicogenomics Database facilitates identification and understanding of chemical-gene-disease associations: Arsenic as a case study. BMC Med. Genomics 1: 48.
  • Dragan, Y. P., Campbell, H. A., Baker, K., Vaughan, J., Mass, M., and Pitot, H. C. 1994. Focal and nonfocal hepatic expression of placental glutathion-S-transferase in carcinogen-treated rats. Carcinogenesis 15: 2587–2591.
  • Ehrlich, M. 2002. DNA methylation in cancer: Too much, but also too little. Oncogene 21: 5400–5413.
  • Esteller, M., Corn, P. G., Baylin, S. B., and Herman, J. G. 2001. A gene hypermethylation profile of human cancer. Cancer Res 61: 3225–3229.
  • Esteller, M., and Herman, J. G. 2002. Cancer as an epigenetic disease: DNA methylation and chromatin alterations in human tumours. J. Pathol. 196: 1–7.
  • Giusti, R. M., Iwamoto, K., and Hatch, E. E. 1995. Diethylstilbestrol revisited—A review of the long-term health effects. Ann. Intern. Med. 122: 778–788.
  • Gronbaek, K., Hother, C., and Jones, P. A. 2007. Epigenetic changes in cancer. APMIS 115: 1039–1059.
  • Hamdi, M., Yoshinaga, M., Packianathan, C., Qin, J., Hallauer, J., McDermott, J. R., Yang, H. C., Tsai, K. J., and Liu, Z. J. 2012. Identification of an S-adenosylmethionine (SAM) dependent arsenic methyltransferase in Danio rerio. Toxicol Appl Pharmacol 262: 185–193.
  • Hanna, C. W., Bloom, M. S., Robinson, W. P., Kim, D., Parsons, P. J., Saal, F. S. V., Taylor, J. A., Steuerwald, A. J., and Fujimoto, V. Y. 2012. DNA methylation changes in whole blood is associated with exposure to the environmental contaminants, mercury, lead, cadmium and bisphenol A, in women undergoing ovarian stimulation for IVF. Hum. Reprod. 27: 1401–1410.
  • Henry, T. R., Nesbit, D. J., Heideman, W., and Peterson, R. E. 2001. Relative potencies of polychlorinated dibenzo-p-dioxin, dibenzofuran, and biphenyl congeners to induce cytochrome P4501A mRNA in a zebrafish liver cell line. Environ. Toxicol. Chem. 20: 1053–1058.
  • Jensen, E. V., and Jordan, V. C. 2003. The estrogen receptor: A model for molecular medicine. Clin. Cancer Res. 9: 1980–1989.
  • Jiang, M., Zhang, Y., Fei, J., Chang, X., Fan, W., Qian, X., Zhang, T., and Lu, D. 2010. Rapid quantification of DNA methylation by measuring relative peak heights in direct bisulfite-PCR sequencing traces. Lab. Invest. 90: 282–290.
  • Jirtle, R. L., and Skinner, M. K. 2007. Environmental epigenomics and disease susceptibility. Nat. Rev. Genet. 8: 253–262.
  • Kamiya, K., Sato, T., Nishimura, N., Goto, Y., Kano, K., and Iguchi, T. 1996. Expression of estrogen receptor and proto-oncogene messenger ribonucleic acids in reproductive tracts of neonatally diethylstilbestrol-exposed female mice with or without postpuberal estrogen administration. Exp. Clin. Endocrinol. Diabet. 104: 111–122.
  • Karon, M., Sieger, L., Leimbroc.S, Finklest.Jz, Nesbit, M. E., and Swaney, J. J. 1973. 5-Azacytidine—New active agent for treatment of acute leukemia. Blood 42: 359–365.
  • Lee, J. S. 2007. GSTP1 promoter hypermethylation is an early event in breast carcinogenesis. Virchows Arch. 450: 637–642.
  • Li, L. C., and Dahiya, R. 2002. MethPrimer: Designing primers for methylation PCRs. Bioinformatics 18: 1427–1431.
  • Li, S. F., Hursting, S. D., Davis, B. J., McLachlan, J. A., and Barrett, J. C. 2003. Environmental exposure, DNA methylation, and gene regulation—Lessons from diethylstilbesterol-induced cancers. Epigenet. Cancer Prev. Early Detect. Risk Assess. 983: 161–169.
  • Lopez, J., Percharde, M., Coley, H. M., Webb, A., and Crook, T. 2009. The context and potential of epigenetics in oncology. Br. J. Cancer 100: 571–577.
  • Lyons, B. P., Stentiford, G. D., Bignell, J., Goodsir, F., Sivyer, D. B., Devlin, M. J., Lowe, D., Beesley, A., Pascoe, C. K., Moore, M. N., and Garnacho, E. 2006. A biological effects monitoring survey of Cardigan Bay using flatfish histopathology, cellular biomarkers and sediment bioassays: Findings of the Prince Madog Prize 2003. Mar. Environ. Res. 62: S342–S346.
  • McClure, E. A., North, C. M., Kaminski, N. E., and Goodman, J. I. 2011. Changes in DNA methylation and gene expression during 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced suppression of the lipopolysaccharide-stimulated IgM response in splenocytes. Toxicol. Sci. 120: 339–348.
  • Mirbahai, L., Williams, T. D., Zhan, H. Q., Gong, Z. Y., and Chipman, J. K. 2011a. Comprehensive profiling of zebrafish hepatic proximal promoter CpG island methylation and its modification during chemical carcinogenesis. BMC Genomics 12: 16.
  • Mirbahai, L., Yin, G. L., Bignell, J. P., Li, N., Williams, T. D., and Chipman, J. K. 2011b. DNA methylation in liver tumorigenesis in fish from the environment. Epigenetics 6: 1319–1333.
  • Morgan, H. D., Santos, F., Green, K., Dean, W., and Reik, W. 2005. Epigenetic reprogramming in mammals. Hum. Mol. Genet. 14: R47–R58.
  • Nagase, H., and Ghosh, S. 2008. Epigenetics: Differential DNA methylation in mammalian somatic tissues. FEBS J. 275: 1617–1623.
  • Nelson, K. G., Sakai, Y., Eitzman, B., Steed, T., and McLachlan, J. 1994. Exposure to diethylstilbestrol during a critical developmental period of the mouse reproductive tract leads to persistent induction of 2 estrogen-regulated genes. Cell Growth Differ. 5: 595–606.
  • Nile, C. J., Read, R. C., Akil, M., Duff, G. W., and Wilson, A. G. 2008. Methylation status of a single CpG site in the IL6 promoter is related to IL6 messenger RNA levels and rheumatoid arthritis. Arthritis Rheumatism 58: 2686–2693.
  • Pitot, H. C., Dragan, Y., Sargent, L., and Xu, Y. H. 1991. Biochemical markers associated with the stages of promotion and progression during hepatocarcinogenesis in the rat. Environ. Health Perspect. 93: 181–189.
  • Reik, W., Dean, W., and Walter, J. 2001. Epigenetic reprogramming in mammalian development. Science 293: 1089–1093.
  • Schreer, A., Tinson, C., Sherry, J. P., and Schirmer, K. 2005. Application of Alamar blue/5-carboxyfluorescein diacetate acetoxymethyl ester as a noninvasive cell viability assay in primary hepatocytes from rainbow trout. Anal. Biochem. 344: 76–85.
  • Sharma, S., Kelly, T. K., and Jones, P. A. 2010. Epigenetics in cancer. Carcinogenesis 31:27–36.
  • Skinner, M. K., Manikkam, M., and Guerrero-Bosagna, C. 2011. Epigenetic transgenerational actions of endocrine disruptors. Reprod. Toxicol. 31: 337–343.
  • Small, H. J., Williams, T. D., Sturve, J., Chipman, J. K., Southam, A. D., Bean, T. P., Lyons, B. P., and Stentiford, G. D. 2010. Gene expression analyses of hepatocellular adenoma and hepatocellular carcinoma from the marine flatfish Limanda limanda. Dis. Aquat. Organisms 88: 127–141.
  • Southam, A. D., Easton, J. M., Stentiford, G. D., Ludwig, C., Arvanitis, T. N., and Viant, M. R. 2008. Metabolic changes in flatfish hepatic tumours revealed by NMR-based metabolomics and metabolic correlation networks. J. Proteome Res. 7: 5277–5285.
  • Steinmetz, K. L., Pogribny, I. P., James, S. J., and Pitot, H. C. 1998. Hypomethylation of the rat glutathione S-transferase pi(GSTP) promoter region isolated from methyl-deficient livers and GSTP-positive liver neoplasms. Carcinogenesis 19: 1487–1494.
  • Stentiford, G. D., Bignell, J. P., Lyons, B. P., and Feist, S. W. 2009. Site-specific disease profiles in fish and their use in environmental monitoring. Mar. Ecol. Prog. Ser. 381: 1–15.
  • Tischoff, I., and Tannapfel, A. 2008. DNA methylation in hepatocellular carcinoma. World J Gastroenterol 14: 1741–1748.
  • Tollefsen, K. E., Blikstad, C., Eikvar, S., Farmen Finne, E., and Katharina Gregersen, I. 2008. Cytotoxicity of alkylphenols and alkylated non-phenolics in a primary culture of rainbow trout (Onchorhynchus mykiss) hepatocytes. Ecotoxicol. Environ. Safety 69: 64–73.
  • Tollefsen, K. E., Petersen, K., and Rowland, S. J. 2012. Toxicity of synthetic naphthenic acids and mixtures of these to fish liver cells. Environ. Sci. Technol. 46: 5143–5150.
  • Valinluck, V., Tsai, H. H., Rogstad, D. K., Burdzy, A., Bird, A., and Sowers, L. C. 2004. Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2). Nucleic Acids Res. 32: 4100–4108.
  • Xie, S. P., Wang, Z. J., Okano, M., Nogami, M., Li, Y., He, W. W., Okumura, K., and Li, E. 1999. Cloning, expression and chromosome locations of the human DNMT3 gene family. Gene 236: 87–95.
  • Zhao, C. Q., Young, M. R., Diwan, B. A., Coogan, T. P., and Waalkes, M. P. 1997. Association of arsenic-induced malignant transformation with DNA hypomethylation and aberrant gene expression. Proc. Natl. Acad. Sci. USA 94: 10907–10912.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.