189
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Alterations in the Atlantic COD (Gadus morhua) Hepatic Thiol-Proteome After Methylmercury Exposure

, &

REFERENCES

  • Ashiuchi, M., and Misono, H. 1999. Biochemical evidence that Escherichia coli hyi (orf b0508, gip) gene encodes hydroxypyruvate isomerase. Biochim. Biophys. Acta 1435: 153–159.
  • Atchison, W. D., and Hare, M. F. 1994. Mechanisms of methylmercury-induced neurotoxicity. FASEB J. 8: 622–629.
  • Belletti, S., Orlandini, G., Vettori, M. V., Mutti, A., Uggeri, J., Scandroglio, R., Alinovi, R., and Gatti, R. 2002. Time course assessment of methylmercury effects on C6 glioma cells: Submicromolar concentrations induce oxidative DNA damage and apoptosis. J. Neurosci. Res. 70: 703–711.
  • Berg, K., Puntervoll, P., Valdersnes, S., and Goksoyr, A. 2010. Responses in the brain proteome of Atlantic cod (Gadus morhua) exposed to methylmercury. Aquat. Toxicol. 100: 51–65.
  • Berntssen, M. H., Aatland, A., and Handy, R. D. 2003. Chronic dietary mercury exposure causes oxidative stress, brain lesions, and altered behaviour in Atlantic salmon (Salmo salar) parr. Aquat. Toxicol. 65: 55–72.
  • Bloom, N. S. 1992. On the chemical form of mercury in edible fish and marine invertebrate tissue. Can. J. Fish. Aquat. Sci. 49: 1010–1017.
  • Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal. Biochem. 72: 248–254.
  • Brubaker, P. E., Lucier, G. W., and Klein, R. 1971. The effects of methylmercury on protein synthesis in rat liver. Biochem. Biophys. Res. Commun. 44: 1552–1558.
  • Cambier, S., Benard, G., Mesmer-Dudons, N., Gonzalez, P., Rossignol, R., Brethes, D., and Bourdineaud, J. P. 2009. At environmental doses, dietary methylmercury inhibits mitochondrial energy metabolism in skeletal muscles of the zebra fish (Danio rerio). Int. J. Biochem. Cell Biol. 41: 791–799.
  • Cambier, S., Gonzalez, P., Mesmer-Dudons, N., Brethes, D., Fujimura, M., and Bourdineaud, J. P. 2012. Effects of dietary methylmercury on the zebrafish brain: Histological, mitochondrial, and gene transcription analyses. Biometals 25: 165–180.
  • Clarkson, T. W. 1997. The toxicology of mercury. Crit. Rev. Clin. Lab. Sci. 34: 369–403.
  • Company, R., Torreblanca, A., Cajaraville, M., Bebianno, M. J., and Sheehan, D. 2012. Comparison of thiol subproteome of the vent mussel Bathymodiolus azoricus from different Mid-Atlantic Ridge vent sites. Sci. Total Environ. 437: 413–421.
  • Delanghe, J. R., and Langlois, M. R. 2001. Hemopexin: A review of biological aspects and the role in laboratory medicine. Clin. Chim. Acta 312:13–23.
  • Dreiem, A., Gertz, C. C., and Seegal, R. F. 2005. The effects of methylmercury on mitochondrial function and reactive oxygen species formation in rat striatal synaptosomes are age-dependent. Toxicol. Sci. 87: 156–162.
  • Dreiem, A., and Seegal, R. F. 2007. Methylmercury-induced changes in mitochondrial function in striatal synaptosomes are calcium-dependent and ROS-independent. Neurotoxicology 28: 720–726.
  • El Golli-Bennour, E., and Bacha, H. 2011. Hsp70 expression as biomarkers of oxidative stress: mycotoxins’ exploration. Toxicology 287: 1–7.
  • Eriksson, S., and Svenson, A. 1978. Catalytic effects by thioltransferase on the transfer of methylmercury and p-mercuribenzoate from macromolecules to low molecular weight thiol compounds. Toxicology 10: 115–122.
  • Esser, C., Alberti, S., and Hohfeld, J. 2004. Cooperation of molecular chaperones with the ubiquitin/proteasome system. Biochim. Biophys. Acta 1695: 171–188.
  • Giblin, F. J., and Massaro, E. J. 1975. The erythrocyte transport and transfer of methylmercury to the tissues of the rainbow trout (Salmo gairdneri). Toxicology 5: 243–254.
  • Gonzalez, P., Dominique, Y., Massabuau, J. C., Boudou, A., and Bourdineaud, J. P. 2005. Comparative effects of dietary methylmercury on gene expression in liver, skeletal muscle, and brain of the zebrafish (Danio rerio). Environ. Sci. Technol. 39: 3972–3980.
  • Hu, W., Tedesco, S., Faedda, R., Petrone, G., Cacciola, S. O., O’Keefe, A., and Sheehan, D. 2010a. Covalent selection of the thiol proteome on activated thiol sepharose: a robust tool for redox proteomics. Talanta 80: 1569–1575.
  • Hu, W., Tedesco, S., McDonagh, B., Barcena, J. A., Keane, C., and Sheehan, D. 2010b. Selection of thiol- and disulfide-containing proteins of Escherichia coli on activated thiol-sepharose. Anal. Biochem. 398: 245–253.
  • Hu, W., Tedesco, S., McDonagh, B., and Sheehan, D. 2010c. Shotgun redox proteomics in sub-proteomes trapped on functionalised beads: Identification of proteins targeted by oxidative stress. Mar. Environ. Res. 69(suppl.): S25–S27.
  • Hughes, W. L. 1957. A physicochemical rationale for the biological activity of mercury and its compounds. Ann. NY Acad. Sci. 65: 454–460.
  • Hwang, G. W. 2011. Role of the ubiquitin-proteasome system in methylmercury toxicity in Saccharomyces cerevisiae. J. Health Sci. 57: 129–133.
  • Ibarz, A., M. Martin-Perez, M., Blasco, J., Bellido, D., de Oliveira, E., and Fernandez-Borras, J. 2010. Gilthead sea bream liver proteome altered at low temperatures by oxidative stress. Proteomics 10: 963–975.
  • Jensen, S., and Jernelov, A. 1969. Biological methylation of mercury in aquatic organisms. Nature 223: 753–754.
  • Klaper, R., B. J. Carter, C. A. Richter, P. E. Drevnick, M. B. Sandheinrich, and D. E. Tillitt. 2008. Use of a 15 k gene microarray to determine gene expression changes in response to acute and chronic methylmercury exposure in the fathead minnow Pimephales promelas Rafinesque. J. Fish Biol. 72: 2207–2280.
  • Kregel, K. C. 2002. Heat shock proteins: Modifying factors in physiological stress responses and acquired thermotolerance. J. Appl. Physiol. 92: 2177–2186.
  • Kuznetsov, D. A., Zavijalov, N. V., Govorkov, A. V., and Richter, V. 1987. Suppression of aminoacyladenylate synthesis by methyl mercury in vitro and in vivo. Toxicol. Lett. 36: 161–165.
  • Kuznetsov, D. A., Zavijalov, N. V., Govorkov, A. V., and Sibileva, T. M. 1987. Methyl mercury-induced nonselective blocking of phosphorylation processes as a possible cause of protein synthesis inhibition in vitro and in vivo. Toxicol. Lett. 36: 153–160.
  • Li, R. C., Saleem, S., Zhen, G., Cao, W., Zhuang, H., Lee, J., Smith, A., Altruda, F., Tolosano, E., and Dore, S. 2009. Heme-hemopexin complex attenuates neuronal cell death and stroke damage. J. Cereb. Blood Flow Metab. 29: 953–964.
  • Liu, H., Shen, J, Feng, L., and Yu, Y. 2009. Low concentration of anti-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene induces alterations of extracellular protein profile of exposed epithelial cells. Proteomics 9: 4259–264.
  • Mela, M., Randi, M. A., Ventura, D. F., Carvalho, C. E., Pelletier, E., and Oliveira Ribeiro, C. A. 2007. Effects of dietary methylmercury on liver and kidney histology in the neotropical fish Hoplias malabaricus. Ecotoxicol. Environ. Safety 68: 426–435.
  • Miseta, A., and Csutora, P. 2000. Relationship between the occurrence of cysteine in proteins and the complexity of organisms. Mol. Biol. Evol. 17: 1232–1239.
  • Miura, K., and Imura, N. 1989. Mechanism of cytotoxicity of methylmercury. With special reference to microtubule disruption. Biol. Trace Elem. Res. 21: 313–316.
  • Miura, K., Inokawa, M., and Imura, N. 1984. Effects of methylmercury and some metal ions on microtubule networks in mouse glioma cells and in vitro tubulin polymerization. Toxicol. Appl. Pharmacol. 73: 218–231.
  • Miura, K., Koide, N., Himeno, S., Nakagawa, I., and Imura, N. 1999. The involvement of microtubular disruption in methylmercury-induced apoptosis in neuronal and nonneuronal cell lines. Toxicol. Appl. Pharmacol. 160: 79–288.
  • Moran, G. R. 2005. 4-Hydroxyphenylpyruvate dioxygenase. Arch. Biochem. Biophys. 433: 117–128.
  • Ni, M., Li, X., Rocha, J. B. T., Farina, M., and Aschner, M. 2012. Glia and methylmercury neurotoxicity. J. Toxicol. Environ. Health A 75: 1091–1101
  • Nostbakken, O. J., Martin, S. A., Cash, P., Torstensen, B. E., Amlund, H., and Olsvik, P. A. 2012. Dietary methylmercury alters the proteome in Atlantic salmon (Salmo salar) kidney. Aquat. Toxicol. 108: 70–77.
  • Olsvik, P. A., Brattas, M., Lie, K. K., and Goksoyr, A. 2011. Transcriptional responses in juvenile Atlantic cod (Gadus morhua) after exposure to mercury-contaminated sediments obtained near the wreck of the German WW2 submarine U-864, and from Bergen Harbor, Western Norway. Chemosphere 83: 552–563.
  • Omata, S., Horigome, T., Momose, Y., Kambayashi, M., Mochizuki, M., and Sugano, H. 1980. Effect of methylmercury chloride on the in vivo rate of protein synthesis in the brain of the rat: examination with the injection of a large quantity of [14C]valine. Toxicol. Appl. Pharmacol. 56: 207–215.
  • Omata, S., Sakimura, K., Tsubaki, H., and Sugano, H. 1978. In vivo effect of methylmercury on protein synthesis in brain and liver of the rat. Toxicol. Appl. Pharmacol. 44: 367–378.
  • Omata, S., Tsubaki, H., Sakimura, K., Sato, M., Yoshimura, R., Hirakawa, E., and Sugano, H. 1981. Stimulation of protein and RNA synthesis by methylmercury chloride in the liver of intact and adrenalectomized rats. Arch. Toxicol. 47: 113–123.
  • Paron, I., D’Elia, A., D’Ambrosio, C., Scaloni, A., D’Aurizio, F., Prescott, A., Damante, G., and Tell, G. 2004. A proteomic approach to identify early molecular targets of oxidative stress in human epithelial lens cells. Biochem. J. 378: 929–937.
  • Prasad, K. N., Nobles, E., and Ramanujam, M. 1979. Differential sensitivities of glioma cells and neuroblastoma cells to methylmercury toxicity in cultures. Environ. Res. 19: 189–201.
  • Qiu, X. B., Shao, Y. M., Miao, S., and Wang, L. 2006. The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cell. Mol. Life Sci. 63: 2560–2570.
  • Rand, M. D., Bland, C. E., and Bond, J. 2008. Methylmercury activates enhancer-of-split and bearded complex genes independent of the notch receptor. Toxicol. Sci. 104: 163–176.
  • Reus, I. S., Bando, I., Andres, D., and Cascales, M. 2003. Relationship between expression of HSP70 and metallothionein and oxidative stress during mercury chloride induced acute liver injury in rats. J. Biochem. Mol. Toxicol. 17: 161–168.
  • Riggs, A. F., and Wolbach, R. A. 1956. Sulfhydryl groups and the structure of hemoglobin. J. Gen. Physiol. 39: 585–605.
  • Sager, P. R., Doherty, R. A., and Olmsted, J. B. 1983. Interaction of methylmercury with microtubules in cultured cells and in vitro. Exp. Cell Res. 146: 127–137.
  • Silver, J. T., and Noble, E. G. 2012. Regulation of survival gene hsp70. Cell Stress Chaperones 17: 1–9.
  • Sternlicht, H., Farr, G. W., Sternlicht, M. L., Driscoll, J. K., Willison, K., and Yaffe, M. B. 1993. The t-complex polypeptide 1 complex is a chaperonin for tubulin and actin in vivo. Proc. Natl. Acad. Sci. USA 90: 9422–9426.
  • Tolosano, E., and Altruda, F. 2002. Hemopexin: Structure, function, and regulation. DNA Cell Biol. 21: 297–306.
  • Vogel, D. G., Margolis, R. L., and Mottet, N. K. 1989. Analysis of methyl mercury binding sites on tubulin subunits and microtubules. Pharmacol. Toxicol. 64: 196–201.
  • Yadetie, F., Karlsen, O. A., Lanzen, A., Berg, K., Olsvik, P., Hogstrand, C., and Goksoyr, A. 2013. Global transcriptome analysis of Atlantic cod (Gadus morhua) liver after in vivo methylmercury exposure suggests effects on energy metabolism pathways. Aquat. Toxicol. 126: 314–325.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.