248
Views
23
CrossRef citations to date
0
Altmetric
Original Articles

Mercury-Resistant Bacteria From Salt Marsh of Tagus Estuary: The Influence of Plants Presence and Mercury Contamination Levels

, , , , &

REFERENCES

  • Alberts, J. J., Price, M. T., and Kania, M. 1990. Metal concentrations in tissues of Spartina alterniflora (Loisel.) and sediments of Georgia salt marshes. Estuar. Coast. Shelf Sci. 30: 47–58.
  • Barkay, T., and Wagner-Dobler, I. 2005. Challenges and achievements in controlling mercury toxicity in the environment. Adv. Appl. Microbiol. 57: 1–40.
  • Caçador, I., Vale, C., and Catarino, F. 1996. Accumulation of Zn, Pb, Cu and Ni in sediments between roots of the Tagus estuary salt marshes. Portugal. Estuar. Coast. Shelf Sci. 42: 393–403.
  • Caçador, I., Vale, C., and Catarino, F. 2000. Seasonal variation of Zn, Pb, Cu and Cd concentrations in the roots–sediment system of Spartina maritima and Halimione portulacoides from Tagus estuary salt marshes. Mar. Environ. Res. 49: 279–290.
  • Caçador, I., Caetano, M., Duarte, B., and Vale, C. 2009. Stock and losses of trace metals from salt marsh plants. Mar. Environ. Res. 67: 75–82.
  • Canário, J., Vale, C., and Caetano, M. 2005. Distribution of monomethylmercury and mercury in surface sediments of the Tagus estuary (Portugal). Mar. Pollut. Bull. 50: 1142–1145.
  • Canário, J., Caetano, M., Vale, C., and Cesário, R. 2007. Evidence for elevated production of methylmercury in salt marshes. Environ. Sci. Technol. 41: 7376–7382.
  • Canário, J., Vale, C., Poissant, L., Nogueira, M., Pilote, M., and Branco, V. 2010. Mercury in sediments and vegetation in a moderately contaminated salt marsh (Tagus Estuary, Portugal). J. Environ. Sci. 22: 1151–1157.
  • Castro, R., Pereira, S., Lima, A., Corticeiro, S., Válega, M., Pereira, E., Duarte, A., and Figueira, E. 2009. Accumulation, distribution and cellular partitioning of mercury in several halophytes of a contaminated salt marsh. Chemosphere 76: 1348–1355.
  • Chiang, Y.-C., Yang, C.-Y., Li, C., Ho, Y.-C., Lin, C.-K., and Tsen, H.-Y. 2006. Identification of Bacillus spp., Escherichia coli, Salmonella spp., Staphylococcus spp. and Vibrio spp. with 16S ribosomal DNA-based oligonucleotide array hybridization. Int. J. Food Microbiol. 107: 131–137.
  • CLSI (Clinical and Laboratory Standards Institute). 2006. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved standard—Seventh edition. Clinical and Laboratory Standards Institute document M7-A7 [ISBN 1-56238-587-9]. Wayne, PA: Clinical and Laboratory Standards Institute.
  • Correia, A., and Lillebø, A. I. 2012. Impact of sampling depth and plant species on local environmental conditions, microbiological parameters and bacterial composition in a mercury contaminated salt marsh. Mar. Pollut. Bull. 64: 263–271.
  • Corrales, J., Naja, G.M., Dziuba, C., Rivero, R. G., and Orem, W. 2011. Sulfate threshold target to control methylmercury levels in wetland ecosystems. Sci. Total Environ. 409: 2156–2162.
  • Compeau G.C., and Bastha, R. 1985. Sufate-reducing bacteria: Principal methylators of mercury in anoxic estuarine sediment. Appl. Environ. Microbiol. 50: 498–502.
  • Crump K. S., Van Landingham C., Shamlaye C., Cox C., Davidson P. W., Myers G. J., and Clarkson, T. W. 2000. Benchmark concentrations for methylmercury obtained from the Seychelles Child development study. Environ. Health Perspect. 108: 257–263.
  • De, J., Ramaiah, L. and Vardanyan, L. 2008. Detoxification of toxic heavy metals by marine bacteria highly resistant to mercury. Mar. Biotechnol. 10:471–477.
  • de Souza, M. P., Huang, C. P. A., Chee, N., and Terry, N. 1999. Rhizosphere bacteria enhance the accumulation of selenium and mercury in wetland plants. Planta 209: 259–263.
  • Duarte, B., Caetano, M., Almeida, P. R., Vale, C., and Caçador, I. 2010. Accumulation and biological cycling of heavy metal in four salt marsh species, from Tagus estuary (Portugal). Environ. Pollut. 158: 1661–1668.
  • Figueiredo, N. L., Canário, J., Duarte, A., Serralheiro, M. L., and Carvalho, C. 2014. Isolation and characterization of mercury-resistant bacteria from sediments of Tagus Estuary (Portugal): Implications for environmental and human Health risk assessment. J. Toxicol. Environ. Health A 77: 155–168.
  • François, F, Lombard, C., Guigner, J. M., Soreau, P., Brian-Jaisson, F., Martino, G., Vandervennet, M., Garcia, D., Molinier, A. L., Pignol, D., Peduzzi, J., Zirah, S., and Rebuffat, S. 2011. Isolation and characterization of environmental bacteria capable of extracellur biosorption of mercury. Appl. Environ. Microbiol. 78: 1097–1106.
  • Hansen, J. C., and Dasher, G. 1997. Organic mercury: An environmental threat to the health of dietary exposed societies? Rev. Environ. Health 12: 107–116.
  • Leonard, T. L., Taylor, G. E., Gustin, M. S., and Fernandez, G. C. J. 1998. Mercury and plants in contaminated soils: 1. Uptake, partitioning, and emission to the atmosphere. Environ. Toxicol. Chem. 17: 2063–2071.
  • Liebert, C., Wireman, J., Smith, T., and Summers, A. 1997. Phylogeny of mercury resistance (mer) operons of gram-negative bacteria isolated from fecal flora of primates. Appl. Environ. Microbiol. 63: 1066–1076.
  • Li, K., and Ramakrishna, W. 2011. Effect of multiple metal resistant bacteria from contaminated lake sediments on metal accumulation and plant growth. J. Hazard. Mater. 189: 531–539.
  • Morel, F. M. M, Kraepiel, A. M. L., and Amyot, M. 1998. The chemical cycle and bioaccumulation of mercury. Annu. Rev. Ecol. Syst. 29: 543–566.
  • Nakamura K., Fujisaki T., and Tamashiro H. 1986. Characteristics of Hg-resistant bacteria isolated from Minamata Bay sediment. Environ. Res. 40: 58–67.
  • Narita, M., Chiba, K., Nishizawa, H., Ishii, H., Huang, C.-C., Kawabata, Z., Silver, S., and Endo, G. 2003. Diversity of mercury resistance determinants among Bacillus strains isolated from sediment of Minamata Bay. FEMS Microbiol. Lett. 223: 73–82.
  • Nascimento, A. M. A., and Chartone-Souza, E. 2003. Operon mer: Bacterial resistance to mercury and potential for bioremediation of contaminated environments. Genet. Mol. Res. 2: 92–101.
  • Osório, N. I. A. 2009. Importância das bactérias fixadoras de azoto na rizosfera de halófitas. Tese de Mestrado em Microbiologia, Universidade de Aveiro, Aveiro, Portugal.
  • Oliveira, V.J. 2008. Diversidade microbiana em rizosfera de plantas de sapal. Tese de Mestrado em Microbiologia, Universidade de Aveiro, Aveiro, Portugal.
  • Raskin, I., Smith, R. D. and Salt, D. E. 1997. Phytoremediation of metals: using plants to remove pollutants from the environment. Curr. Opin. Biotechnol. 8: 221–226.
  • Reboreda, R. and Caçador, I. 2007. Halophyte vegetation influences in salt marsh retention capacity for heavy metals. Environ. Pollut. 146: 147–154.
  • Robinson, J. B., and Tuovinen, O. H. 1984. Mechanisms of microbial resistance and detoxification of mercury and organomercury compounds: physiological, biochemical, and genetic analyses. Microbiol. Rev. 48: 95–124.
  • Ruggiero, P., Terzano, R., Spagnuolo, M., Cavalca, L., Colombo, M., Andreoni, V., Rao, M. A., Perucci, P., and Monaci, E. 2011. Mercury bioavailability and impact on bacterial communities in a long-term polluted soil. J. Environ. Monit. 13: 145–156.
  • Sadhukahan, P. C., Ghosh, S., Chaudhuri, J., Ghosh, D. K., and Mandal, A. 1997. Mercury and organomercurial resistance in bacteria isolated from freshwater fish of wetland fisheries around Calcutta. Environ. Pollut. 97: 71–78.
  • Sadhukahan, P.C., Ghosh, S., Chaudhuri, J., Ghosh, D. K., and Mandal, A. 1997. Mercury and organomercurial resistance in bacteria isolated from freshwater fish of wetland fisheries around Calcutta. Environ. Pollut. 97: 71–78.
  • Santos, L., Cunha, A., Silva, H., Caçador, I., Dias, J. M., and Almeida, A. 2006. Influence of salt marsh on bacterial activity in two estuaries with different hydrodynamic characteristics (Ria de Aveiro and Tagus Estuary). FEMS Microbiol. Ecol. 60: 429–441.
  • Summers, A. O. 1986. Organization, expression and evolution of genes for mercury resistance. Annu. Rev. Microbiol. 40: 607–634.
  • Tchounwou, P. B., Ayensu, W. K., Ninsshvili, N., and Sutton, D. 2003. Environmental exposure to mercury and its toxicopathologic implications for public health. Environ. Toxicol. 18: 149–175.
  • Timoney, J. F., Port, J., Giles, J., and Spanier, J. 1978. Heavy-metal and antibiotic resistance in the bacterial flora of sediments of New York Bight. Appl. Environ. Microbiol. 36: 465–472.
  • Válega, M., Lillebø, A. I., Caçador, I., Pereira, M. E., Duarte, A. C., Pardal, M. A. 2008a. Mercury mobility in a salt marsh colonised by Halimione portulacoides. Chemosphere 72: 1607–1613.
  • Válega, M., Lillebo, A.I., Pereira, M. E., Corns, W. T., Stockwell, P. B., Duarte, A. C., and Pardal, M. A. 2008b. Assessment of methylmercury production in a temperate salt marsh (Ria de Aveiro Lagoon, Portugal). Mar. Pollut. Bull. 56: 136–162.
  • Válega, M., Lillebo, A.I., Pereira, M.E., Caçador, I., Duarte, A. C. and Pardal, M. A, 2008c. Mercury in salt marshes ecosystems: Halimione portulacoides as biomonitor. Chemosphere 73: 1224–1229.
  • Válega, M., Lima, A. I. G., Figueira, E. M. A. P., Pereira, E., Pardal, M. A., and Duarte, A. C. 2009. Mercury intracellular partitioning and chelation in a salt marsh plant, Halimione portulacoides (L.) Aellen: Strategies underlying tolerance in environmental exposure. Chemosphere 74: 530–536.
  • Vishnivetskaya, T., Mosher, J., Paumbo, A., Yang, Z., Podar, M., Brown, S., Brooks, S., Gu, B., Southworth, G., Drake, M., Brandt, C., and Elias, D. 2011. Mercury and other heavy metals influence bacterial community structure in contaminated Tennessee streams. Appl. Environ. Microbiol. 77: 302–311.
  • Weis, P.,Windham, L., Burke, D. J., and Weis, J. S. 2002. Release into the environment of metals by two vascular salt marsh plants. Mar. Environ. Res. 54: 325–329.
  • Windham, L., Weis, J. S., and Weis, P. 2003. Uptake and distribution of metals in two dominant salt marsh macrophytes, Spartina alterniflora (cordgrass) and Phragmites australis (common reed). Estuar. Coast. Shelf Sci., 56: 63–72.
  • Zhang, W., Chen, L., and Liu, D. 2012. Characterization of a marine-isolated mercury-resistant Pseudomonas putida strain SP1 and its potential application in marine mercury reduction. Appl. Microbiol. Biotechnol., 93: 1305–1314.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.