246
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Single-Wall Carbon Nanotubes (SWCNT) Induce Cytotoxicity and Genotoxicity Produced by Reactive Oxygen Species (ROS) Generation in Phytohemagglutinin (PHA)-Stimulated Male Human Peripheral Blood Lymphocytes

&
Pages 1141-1153 | Received 10 Apr 2014, Accepted 17 Apr 2014, Published online: 13 Aug 2014

REFERENCES

  • Beg, S., Rizwan, M., Sheikh, A.M., Hasnain, M.S., Anwer, K., and Kohli, K. 2011. Advancement in carbon nanotubes: Basics, biomedical applications and toxicity. J. Pharm. Pharmacol. 63: 141–163.
  • Brown, D. M., Kinloch, I. A., Bangert, U., Windle, A. H., Walter, D. M., Walker, G. S., Scotchford, C. A., Donaldson, K., and Stone, V. 2007. An in vitro study of the potential of carbon nanotubes and nanofibres to induce inflammatory mediators and frustrated phagocytosis, Carbon 45: 1743–1756.
  • Card, J. W., Zeldin, D. C., Bonner, J. C., and Nestman, E. R. 2008. Pulmonary applications and toxicity of engineered nanoparticles. Am. J. Physiol. 295: L400–L411.
  • Cassel, S. L., Eisenbarth, S. C., Iyer, S. S., Sadler, J. J., Colegio, O. R., Tephly, L. A., Carter, A. B., Rothman, P. B., Flavell, R. A., and Sutterwala, F. S. 2008. The Nalp3 inflammasome is essential for the development of silicosis. Proc. Natl. Acad. Sci. USA 105: 9035–9040.
  • Cicchetti, R., Divizia, M., Valentini, F., and Argentin, G. 2011. Effects of single-wall carbon nanotubes in human cells of the oral cavity: Geno-cytotoxic risk. Toxicol. In Vitro. 25: 1811–1819.
  • Clark, K. A., O’Driscoll, C., Cooke, C. A., Smith, B. A., Wepasnick, K., Fairbrother, D. H., Lees, P. S., and Bressler, J. P. 2012. Evaluation of the interactions between multiwalled carbon nanotubes and Caco-2 cells. J. Toxicol. Environ. Health A 75: 25–35.
  • Donaldson, K., and Poland, C. A. 2012. Inhaled nanoparticles and lung cancer—What we can learn from conventional particle toxicology. Swiss Med. Weekly. 142: w13547.
  • Dostert, C., Pétrilli, V., Van Bruggen, R., Steele, C., Mossman, B. T., and Tschopp, J. 2008. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320: 674–677.
  • Dresselhaus, M., Dresselhaus, G., Eklund, P., and Saito, R. 1998. Carbon nanotubes. Phys. World 11: 33–38.
  • Droge, W. 2002. Free radical in the physiological control of cell function. Physiol. Rev. 82: 47–59.
  • Feazell, R. P., Nakayama-Ratchford, N., Dai, H., and Lippard, S. J. 2007. Soluble singlewalled carbon nanotubes as longboat delivery systems for platinum(IV) anticancer drug design. J. Am. Chem. Soc. 129: 8438–8439.
  • Fenech, M., 2000. The in vitro micronucleus technique. Mutat. Res. 455: 81–95.
  • Finkel, T. 2001. Reactive oxygen species and signal transduction. IUBMB Life 52: 3–6.
  • Finkel, T. 2003. Oxidant signals and oxidative stress. Curr. Opin. Cell Biol. 15: 247–254.
  • Gannon, C. J., Cherukuri, P., Yakobson, B. I., Cognet, L., Kanzius, J. S., Kittrell, C., Weisman, R. B., Pasquali, M., Schmidt, H. K., Smalley, R. E., and Curley, S. A. 2007. Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer 110: 2654–2665.
  • Gonzales, L., Lison, D., and Kirsch-Volders, M. 2008. Genotoxicity of engineered nanomaterials: A critical review. Nanotoxicology 2: 252–273.
  • Guo, N. L., Wan, Y. W., Denvir, J., Porter, D. W., Pacurari, M., Wolfarth, M. G., Castranova, V., and Qian, Y. 2012. Multiwalled carbon nanotube-induced gene signatures in the mouse lung: Potential predictive value for human lung cancer risk and prognosis. J. Toxicol. Environ. Health A. 75: 1129–1153.
  • Gwinn, M. R., and Vallyathan, V. 2006. Nanoparticles: health effects—Pros and cons. Environ. Health Perspect. 114: 1818–1825.
  • Herzog, E., Byrne, H. J., and Casey, A., Davoren, D., Lenz, A. G., Maier, K. L., Duschl, A., and Oostingh, G. J. 2009a. SWCNT suppress inflammatory mediator responses in human lung epithelium in vitro. Toxicol. Appl. Pharmacol. 234: 378–390.
  • Herzog, E., Byrne, H. J., Davoren, M., Casey, A., Duschl, A., and Oostingh, G. J. 2009b. Dispersion medium modulates oxidative stress response of human lung epithelial cells upon exposure to carbon nanomaterial samples. Toxicol. Appl. Pharmacol. 236: 276–281.
  • Jeong, H. J., Hong, S. H., Lee, D. J., Park, J. H., Kim, K. S., and Kim, H. M. 2002. Role of Ca(2+) on TNF-alpha and IL-6 secretion from RBL-2H3 mast cells. Cell. Signal. 14: 633–639.
  • Jia, G., Wang, H., Yan, L., Wang, X., Pei, R., Yan, T., Zhao, Y., and Guo, X. 2005. Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ. Sci. Technol. 39: 1378–1383.
  • Kim, J. S., Kim, T. L., Kim, K. C., Choe, C., Chung, H. W., Cho, E. W., and Kim, I. G. 2006. S-Adenosylmethionine decarboxylase partially regulates cell growth of HL-60 cells by controlling the intracellular ROS level: Early senescence and sensitization to gamma-radiation. Arch. Biochem. Biophys. 456: 58–70.
  • Kim, J. S., Song, K. S., Joo, H. J., Lee, J. H., and Yu, I. J. 2010. Determination of cytotoxicity attributed to multiwall carbon nanotubes (MWCNT) in normal human embryonic lung cell (WI-38) line. J. Toxicol. Environ. Health A 73: 1521–1529.
  • Kim, J. S., Song, K. S., Lee, J. H., and Yu, I. J. 2011a. Evaluation of biocompatible dispersants for carbon nanotube toxicity tests. Arch. Toxicol. 85: 1499–1508.
  • Kim, J. K., Lee, S. M., Suk, K., and Lee, W. H. 2011b. A novel pathway responsible for lipopolysaccharide-induced translational regulation of TNF-α and IL-6 expression involves protein kinase C and fascin. J. Immunol. 187: 6327–6334.
  • Knaapen, A. M., Borm, P. J., Albrecht, C., and Schins, R. P. 2004. Inhaled particles and lung cancer. Part A: Mechanisms. Int. J. Cancer 109: 799–809.
  • Lacerda, L., Bianco, A., Prato, M., and Kostarelos, K. 2006. Carbon nanotubes as nanomedicines: from toxicology to pharmacology. Adv. Drug Deliv. Rev. 58: 1460–1470.
  • Lamprecht, C., Liashkovich, I., Neves, V., Danzberger, J., Heister, E., Rangl, M., Coley, H. M., McFadden, J., Flahaut, E., Gruber, H. J., Hinterdorfer, P., Kienberger, F., and Ebner, A. 2009. AFM imaging of functionalized carbon nanotubes on biological membranes. Nanotechnology 20: 434001.
  • Liu, D., Yi, C., Zhang, D., Zhang, J., and Yang, M. 2010. Inhibition of proliferation and differentiation of mesenchymal stem cells by carboxylated carbon nanotubes. ACS Nano 27: 2185–2195.
  • Madani, S.Y., Naderi, N., Dissanayake, O., Tan, A., and Seifalian, A.M. 2011. A new era of cancer treatment: carbon nanotubes as drug delivery tools. Int. J. Nanomed 6: 2963–2979.
  • Manna, S. K., Sarkar, S., Barr, J., Wise, K., Barrera, E. V., Jejelowo, O., Rice-Ficht, A. C., and Ramesh, G. T. 2005. Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-kappaB in human keratinocytes. Nano Lett. 5: 1676–1684.
  • Martindale, J. L., and Holbrook, N. J. 2002. Cellular response to oxidative stress: signaling for suicide and survival. J. Cell Physiol. 192: 1–15.
  • Murray, A.R., Kisin, E., Leonard, S. S., Young, S. H., Kommineni, C., Kagan, V. E., Castranova, V., and Shvedova, A. A. 2009. Oxidative stress and inflammatory response in dermal toxicity of single-walled carbon nanotubes. Toxicology 257: 161–171.
  • Pacurari, M., Castranova, V., and Vallyathan, V. 2010. Single- and multi-wall carbon nanotubes versus asbestos: Are the carbon nanotubes a new health risk to humans? J. Toxicol. Environ. Health A 73: 378–395.
  • Pacurari, M., Qian, Y., Fu, W., Schweger-Berry, D., Ding, M., Castranova, V., and Guo, N. L. 2012. Cell permeability, migration, and reactive oxygen species induced by multiwalled carbon nanotubes in human microvascular endothelial cells. J. Toxicol. Environ. Health A 75: 112–2128.
  • Pantarotto, D., Briand, J. P., Prato, M., and Bianco, A. 2004. Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem. Commun. (Cambridge) 1: 16–17.
  • Paradise, M., and Goswami, T. 2007. Carbon nanotube production and industrial applications. Mater. Des. 28: 1477–1489.
  • Park, E. J., Roh, J., Kim, S. N., Kang, M. S., Lee, B. S., Kim, Y., and Choi, S. 2011. Biological toxicity and inflammatory response of semi-single-walled carbon nanotubes. PLoS One 6: e25892.
  • Porter, D., Sriram, K., Wolfarth, M., Jefferson A., Schwegler-Berry, D., Andrew, M. E., and Castranova, V. 2008. A biocompatible medium for nanoparticle dispersion. Nanotoxicology 2: 144–154.
  • Pulskamp, K., Diabaté, S., and Krug, H. F. 2007. Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol. Lett. 168: 58–74.
  • Riganti, C., Aldieri, E., Bergandi, L., Tomatis, M., Fenoglio, I., Costamagna, C., Fubini, B., Bosia, A., and Ghigo, D. 2003. Long and short fiber amosite asbestos alters at a different extent the redox metabolism in human lung epithelial cells. Toxicol. Appl. Pharmacol. 193: 106–115.
  • Sager, T. M., and Castranova, V. 2009. Surface area of particle administered versus mass in determining the pulmonary toxicity of ultrafine and fine carbon black: comparison to ultrafine titanium dioxide. Part. Fibre Toxicol. 6:15.
  • Sahoo, N. G., Bao, H., Pan, Y., Pal, M., Kakran, M., Cheng, H. K., Li, L., and Tan, L. P. 2011. Functionalized carbon nanomaterials as nanocarriers for loading and delivery of a poorly water-soluble anticancer drug: A comparative study. Chem. Commun. (Cambridge) 47: 5235–5237.
  • Schins, R. P. 2002. Mechanisms of genotoxicity of particles and fibers. Inhal. Toxicol. 14: 57–78.
  • Schins, R. P., and Knaapen, A. M. 2007. Genotoxicity of poorly soluble particles. Inhal. Toxicol. 19(suppl. 1): 189–198.
  • Singh, N. P., Mc Coy, M. T., Tice, R. R., and Schneider, E. L. 1988. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 175: 184–191.
  • Sinnott, S. B., and Andrews, R. 2001. Carbon nanotubes: Synthesis, properties, and applications. Crit. Rev. Solid State Mater. Sci. 26: 145–249.
  • Subramoney, S. 1998. Novel nanocarbons—Structure, properties, and potential applications. Adv. Mater. 10: 1157–1171.
  • Surrallés, J., Xamena, N., Creus, A., Catalán, J., Norppa, H., and Marcos, R. 1995. Induction of micronuclei by five pyrethroid insecticides in whole blood and isolated human lymphocyte cultures. Mutat. Res. 341:169–184.
  • Tran, C. L., Hankin, S. M., Ross, B., Aitken, R. J., Jones, A. D., Donaldson, K., Stone, V., and Tantra, R. 2008. An outline scoping study to determine whether high aspect ratio nanoparticles (HARN) should raise the same concerns as do asbestos fibres, Institute on Medicine Report on Project CB0406, Edinburgh, UK.
  • Tian, F., Cui, D., Schwarz, H., Estrada, G. G., and Kobayashi, H. 2006. Cytotoxicity of single-wall carbon nanotubes on human fibroblasts. Toxicol. In Vitro 20: 1202–1212.
  • Yang, S. T., Wang, X., Jia, G., Gu, Y., Wang, T., Nie, H., Ge, C., Wang, H., and Liu, Y. 2008. Long-term accumulation and low toxicity of single-walled carbon nanotubes in intravenously exposed mice. Toxicol. Lett. 181: 182–189.
  • Yu, K. N., Kim, J. E., Seo, H. W., Chae, C., and Cho, M. H. 2013. Differential toxic responses between pristine and functionalized multiwall nanotubes involve induction of autophagy accumulation in murine lung. J. Toxicol. Environ. Health A 76: 1282–1292.
  • Zhao, J., and Castranova, V. 2011. Toxicology of nanomaterials used in nanomedicine. J. Toxicol. Environ. Health B 14: 593–632.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.