498
Views
39
CrossRef citations to date
0
Altmetric
Original Articles

Genotoxicity and DNA Repair Processes of Zinc Oxide Nanoparticles

, &
Pages 1292-1303 | Received 29 Apr 2014, Accepted 12 Jun 2014, Published online: 30 Sep 2014

REFERENCES

  • Beyersmann, D., and Hartwig, A. 2008. Carcinogenic metal compounds: Recent insight into molecular and cellular mechanisms. Arch. Toxicol. 82: 493–512.
  • Demir, E., Burgucu, D., Turna, F., Aksakal, S., and Kaya, B. 2013. Determination of TiO2, ZrO2, and Al2O3 nanoparticles on genotoxic responses in human peripheral blood lymphocytes and cultured embryonic kidney cells. J. Toxicol. Environ. Health A 76: 990–1002.
  • Demir, E., Akça, H., Kaya, B., Burgucu, D., Tokgün, O., Turna, F., Aksakal, S., Vales, G., Creus, A., and Marcos, R. 2014. Zinc oxide nanoparticles: Genotoxicity, interactions with UV-light and cell-transforming potential. J. Hazard. Mater. 264: 420–429.
  • Dufour, E. K., Kumaravel, T., Nohynek, G. J., Kirkland, D., and Toutain, H. 2006. Clastogenicity, photo-clastogenicity or pseudo photo-clastogenicity: Genotoxic effects of zinc oxide in the dark, in pre-irradiated or simultaneously irradiated Chinese hamster ovary cells. Mutat. Res. 607: 215–224.
  • El-Yamani, N., Zúñiga, L., Stoyanova, E., Creus, A., and Marcos, R. 2011. Chromium-induced genotoxicity and interference in human lymphoblastoid cell (TK6) repair processes. J. Toxicol. Environ. Health A 74: 1030–1039.
  • Fatur, T., Lah, T. T., and Filipič, M. 2003. Cadmium inhibits repair of UV-methyl methanesulfonate- and N-methyl-N-nitrosourea-induced DNA damage in Chinese hamster ovary cells. Mutat. Res. 529: 109–116.
  • Guan, R., Kang, T., Lu, F., Zhang, Z., Shen, H., and Liu, M. 2012. Cytotoxicity, oxidative stress, and genotoxicity in human hepatocyte and embryonic kidney cells exposed to ZnO nanoparticles. Nanoscale Res. Lett. 7: 602–608.
  • Guillamet, E., Creus, A., Farina, M., Sabbioni, E., Fortaner, S., and Marcos, R. 2008. DNA-damage induction by eight metal compounds in TK6 human lymphoblastoid cells: Results obtained with the alkaline Comet assay. Mutat. Res. 654: 22–28.
  • Gupta, S. K., Baweja, L., Gurbani, D., Pandey, A. K., and Dhawan, A. 2011. Interaction of C60 fullerene with the proteins involved in DNA mismatch repair pathway. J. Biomed. Nanotechnol. 7: 179–180.
  • Hackenberg, S., Zimmermann, F. Z., Scherzed, A., Friehs, G., Froelich, K., Ginzkey, C., Koehler, C., Burghartz, M., Hagen, R., and Kleinsasser, N. 2011. Repetitive exposure to zinc oxide nanoparticles induces DNA damage in human nasal mucosa mini organ cultures. Environ. Mol. Mutagen. 52: 582–589.
  • Hanas, J. S., and Gunn, C.G. 1996. Inhibition of transcription factor IIIA-DNA interactions by xenobiotic metal ions. Nucl. Acids Res. 24: 924–930.
  • Hartwig, A. 1998. Carcinogenicity of metal compounds: Possible role of DNA repair inhibition. Toxicol. Lett. 102/103: 235–239.
  • Hartwig, A., Asmuss, M., Ehleben, I., Herzer, U., Kostelac, D., Pelzer, A., Schwerdtle, T., and Burkle, A 2002. Interference by toxic metal ions with DNA repair processes and cell cycle control: Molecular mechanisms. Environ. Health Perspect. 110: 797–799.
  • Henderson, L., Wolfreys, A., Fedyk, J., Bourner, C., and Windebank, S. 1998. The ability of the Comet assay to discriminate between genotoxins and cytotoxins. Mutagenesis 13: 89–94.
  • Horinouchi, M., and Arimoto-Kobayashi, S. 2011. Photomicronucleus assay of phototoxic and pseudophotoclastogenic chemicals in human keratinocyte NCTC2544 cells. Mutat. Res. 723: 43–50.
  • Huang, S., Chueh, P. J., Lin, Y. W., Shih, T. S., and Chuang, S. M. Disturbed mitotic progression and genome segregation are involved in cell transformation mediated by nano-TiO2 long-term exposure. Toxicol. Appl. Pharmacol. 241: 182–194.
  • Jacobsen, N. R., Pojano, G., Wallin, H., and Jensen, K. A. 2010. Nanomaterial dispersion protocol for toxicological studies in ENPRA. Internal ENPRA report. March 2010. National Research Centre for the Working Environment. Available on request from the NRCWE.
  • Jones, P., Sugino, S., Yamamura, S., Lacy, F., and Biju, V. 2013. Impairments of cells and genomic DNA by environmentally transformed engineered nanomaterials. Nanoscale 5: 9511–9516.
  • Jugan, M. L., Barillet, S., Simon-Deckers, A., Herlin-Boime, N., Sauvaigo, S., Douki, T., and Carriere, M. 2012. Titanium dioxide nanoparticles exhibit genotoxicity and impair DNA repair activity in A549 cells. Nanotoxicology 6: 501–513.
  • Kain, J., Karlsson, H. L., and Möller, L. 2012. DNA damage induced by micro- and nanoparticles-interaction with FPG influences the detection of DNA oxidation in the comet assay. Mutagenesis 27: 491–500.
  • Karlsson, H. L. 2010. The comet assay in nanotoxicology research. Anal. Bioanal. Chem. 398: 651–666.
  • Karlsson, H. L., Gustafsson, J., Cronholm, P., and Möller, L. 2009. Size-dependent toxicity of metal oxide particles—A comparison between nano- and micrometer size. Toxicol. Lett. 188: 112–118.
  • Kocbek, P., Teskac, K., Kreft, M. E., and Kristl, J. 2010. Toxicological aspects of long-termtreatment of keratinocytes with ZnO and TiO2 nanoparticles. Small 6: 1908–1917.
  • Kumar, A., Pandey, A. K., Singh, S. S., Shanker, R., and Dhawan, A. 2011a. Cellular uptake and mutagenic potential of metal oxide nanoparticles in bacterial cells. Chemosphere 83: 1124–1132.
  • Kumar, A., Pandey, A. K., Singh, S. S., Shanker, R., and Dhawan, A. 2011b. Engineered ZnO and TiO(2) nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radical Biol. Med. 51: 1872–1881.
  • Landsiedel, R., Kapp, M. D., Schulz, M., Wiench, K., and Oesch, F. 2009. Genotoxicity investigations on nanomaterials: Methods, preparation and characterization of test material, potential artifacts and limitations-Many questions, some answers. Mutat. Res. 681: 241–258.
  • Lankoff, A., Banasik, A., Dumaa, A., Ochniak, E., Lisowska, H., Kuszewski, T., Góźdź, S., and Wojcik, A. 2006. A comet assay study reveals that aluminium induces DNA damage and inhibits the repair of radiation-induced lesions in human peripheral blood lymphocytes. Toxicol. Lett. 161: 27–36.
  • Li, D., and Haneda, H. 2003. Morphologies of zinc oxide particles and their effects on photocatalysis. Chemosphere 51: 129–137.
  • Li, H., Swierez, R., and Englander, E. W. 2009. Elevated metals compromise repair of oxidative DNA damage via the base excision repair pathway: Implications of pathologic iron overload in brain on integrity of neuronal DNA. J. Neurochem 110: 1774–1784.
  • Liau, S. Y., Rea, D. C., Pugh, W. J., Furr, J. R., and Russell, A. D. 1997. Interaction of silver nitrate with readily identifiable groups: Relationship to the antibacterial action of silver ions. Lett. Appl. Microbiol. 25: 279–283.
  • Magdolenova, Z., Lorenzo, Y., Collins, A., and Dusinska, M. 2012. Can standard genotoxicity tests be applied to nanoparticles? J. Toxicol. Environ. Health A 75: 13–15.
  • Nam, S. H., Kim, S. W., and An, Y. J. 2013. No evidence of the genotoxic potential of gold, silver, zinc oxide and titanium dioxide nanoparticles in the SOS chromotest. J. Appl. Toxicol. 33: 1061–1069.
  • Nohynek, G. J., Lademann, J., Ribaud, C., and Roberts, M. S. 2007. Grey goo on the skin? Nanotechnology, cosmetic and sunscreen safety. Crit. Rev. Toxicol. 37: 251–177.
  • Osman, I. F., Baumgartner, A., Cemeli, E., Fletcher, J. N., and Anderson, D. 2010. Genotoxicity and cytotoxicity of zinc oxide and titanium dioxide in Hep-2 cells. Nanomedicine 5: 1193–1203.
  • Royal Society and Royal Academy of Engineering. 2004. Report. Nanoscience and nanotechnologies: Opportunities and uncertainties. http://www.nanotec.org.uk/finalReport.htm
  • Sahu, D., Kannan, G. M., and Vijayaraghavan, R. 2014. Size-dependent effect of zinc oxide on toxicity and inflammatory potential of human monocytes. J. Toxicol. Environ. Health A 77: 177–191.
  • Sellappa, S., Prathyumnan, S., Keyan, K. S., Joseph, S., Vasudevan, B. S. G., and Sasikala, K. 2010. Evaluation of DNA damage induction and repair inhibition in welders exposed to hexavalent chromium. Asian Pacific J. Cancer Prev. 11: 95–100.
  • Sharma, V., Shukla, R. K., Saxena, N., Parmar, D., Das, M., and Dhawan, A. 2009. DNA damaging potential of zinc oxide nanoparticles in human epidermal cells. Toxicol. Lett. 185: 211–218.
  • Sharma, V., Singh, S. K., Anderson, D., Tobin, D. J., and Dhawan, A. 2011a. Zinc oxide nanoparticle induced genotoxicity in primary human epidermal keratinocytes. J. Nanosci. Nanotechnol. 11: 3782–3788.
  • Sharma, V., Anderson, D., and Dhawan, A. 2011b. Zinc oxide nanoparticles induce oxidative stress and genotoxicity in human liver cells (HepG2). J. Biomed. Nanotechnol. 7: 98–99.
  • Shi, J., Springer, S., and Escobar, P. 2010. Coupling cytotoxicity biomarkers with DNA damage assessment in TK6 human lymphoblast cells. Mutat. Res. 696: 167–178.
  • Singh, N. P., McCoy, M. T., Tice, R. R., and Schneider, E. L. 1998. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 175: 184–191.
  • Singh, N., Manshian, B., Jenkins, G. J., Griffiths, S. M., Williams, P. M., Maffeis, T. G., Wright, C. J., and Doak, S. H. 2009. NanoGenotoxicology: The DNA damaging potential of engineered nanomaterials. Biomaterials 30: 3891–3914.
  • Strauss, G. H. 1991. Non-random cell killing in cryopreservation: Implications for performance of the battery of leukocyte tests (BLT), I. Toxic and immunotoxic effects. Mutat. Res. 252: 1–15.
  • Woźniak, K., and Blasiak, J. 2004. Nickel impairs the repair of UV- and MNNG-damaged DNA. Cell Mol. Biol. Lett. 9: 83–94.
  • Yang, H., Liu, C., Yang, D., Zhang, H., and Xi, Z. 2009. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: The role of particle size, shape and composition. J. Appl. Toxicol. 29: 69–78.
  • Yeber, M. C., Rodríguez, J., Freer, J., Durán, N., and Mansilla, H. D. 2000. Photocatalytic degradation of cellulose bleaching effluent by supported TiO2 and ZnO. Chemosphere 41:1193–1197.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.