396
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Genotoxicity Assessment of Reactive and Disperse Textile Dyes Using Human Dermal Equivalent (3D Cell Culture System)

, , , , &
Pages 466-480 | Received 11 Dec 2014, Accepted 13 Dec 2014, Published online: 18 Mar 2015

REFERENCES

  • Adams, L. W., and Priestley, G. C. 1988. Contraction of collagen lattices by skin fibroblasts: drug-induced changes. Arch. Dermatol. Res. 280: 114–118.
  • Bafana, A., Devi, S. S., and Chakrabarti, T. 2011. Azo dyes: Past,present and the future. Environ. Rev. 19:350–370.
  • Behravesh, E., Emami, K., Wu, H., and Gonda, S. 2005. Comparison of genotoxic damage in monolayer cell cultures and three-dimensional tissue-like cell assemblies. Adv. Space Res. 35:260–267.
  • Bell, E., Ivarsson, B., and Merrill, C. 1979. Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc. Natl. Acad. Sci. USA 76: 1274–1278.
  • Black, A. F., Bouez, C., Perrier, E., Schlotmann, K., Chapuis, F., and Damour, O. 2005. Optimization and characterization of an engineered human skin equivalent. Tissue Eng. 11: 723–733.
  • Brinkmann, J., Stolpmann, K., Trappe, S., Otter, T., Genkinger, D., Bock, U., Liebsch, M., Henkler, F., Hutzler, C., and Luch, A. 2013. Metabolically competent human skin models: Activation and genotoxicity of benzo[a]pyrene. Toxicol. Sci. 131: 351–359.
  • Brohem, C. A., Cardeal, L. B. D. S., Tiago, M., Soengas, M. S., Barros, S. B. D. M., and Maria-Engler, S. S. 2011. Artificial skin in perspective: Concepts and applications. Pigment Cell Melanoma Res. 24: 35–50.
  • Calleja-Agius, J., Muscat-Baron, Y., and Brincat, M. P. 2007. Skin ageing. Menopause Int. 13: 60–64.
  • Carmen, Z., and Daniela, S. 2012. Textile organic dyes—Characteristics, polluting effects and separation/elimination procedures from industrial effluents—A critical overview. In Organic pollutants ten years after the Stockholm Convention—Environmental and analytical update, ed. T. Puzyn and A. Mostrag-Szlichtyng, 55–86. InTech—Open Access Company. http://www.intechopen.com/books/organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update/textile-organic-dyes-characteristics-polluting-effects-and-separation-elimination-procedures-from-in
  • Chequer, F. M. D., Angeli, J. P. F., Ferraz, E. R. A., Tsuboy, M. S., Marcarini, J. C., Mantovani, M. S., and Oliveira, D. P. 2009. The azo dyes disperse red 1 and disperse orange 1 increase the micronuclei frequencies in human lymphocytes and in HepG2 cells. Mutat. Res. 676: 83–86.
  • Chequer, F. M. D., Lizier, T. M., Felício, R., Zanoni, M. V. B., Debonsi, H. M., Lopes, N. P., Marcos, R., and Oliveira, D. P. 2011. Analyses of the genotoxic and mutagenic potential of the products formed after the biotransformation of the azo dye disperse red 1. Toxicol. In Vitro 25: 2054–2063.
  • Chequer, F. M. D, Oliveira, G. A. R, Ferraz, E. R. A., Cardoso, J. C., Zanoni, M. V. B., and Oliveira, D. P. 2013. Textile dyes: Dyeing process and environmental impact. In Eco-friendly textile dyeing and finishing, ed. M. Günay, 151–175. InTech — Open Access Company. http://www.intechopen.com/books/eco-friendly-textile-dyeing-and-finishing/textile-dyes-dyeing-process-and-environmental-impact
  • Chung, K.-T., and Cerniglia, C. E. 1992. Mutagenicity of azo dyes: Structure–activity relationships. Mutat. Res. 277: 201–220.
  • Collins, J. E., Ellis, P. C., White, A. T., Booth, A. E. G., Moore, C. E., Burman, M., Rees, R. W., and Lynch, A. M. 2008. Evaluation of the Litron In Vitro MicroFlow Kit for the flow cytometric enumeration of micronuclei (MN) in mammalian cells. Mutat. Res. 654: 76–81.
  • Curren, R. D., Mun, G. C., Gibson, D. P., and Aardema, M. J. 2006. Development of a method for assessing micronucleus induction in a 3D human skin model (EpiDerm). Mutat. Res. 607: 192–204.
  • Dahl, E. L., Curren, R., Barnett, B. C., Khambatta, Z., Reisinger, K., Ouedraogo, G., Faquet, B., Ginestet, A. C., Mun, G., Hewitt, N. J., Carr, G., Pfuhler, S., and Aardema, M. J. 2011. The reconstructed skin micronucleus assay (RSMN) in EpiDermTM: Detailed protocol and harmonized scoring atlas. Mutat. Res. 720: 42–52.
  • Ebisawa, K., Kato, R., Okada, M., Sugimura, T., Latif, M. A., Hori, Y., Narita, Y., Ueda, M., Honda, H., and Kagami, H. 2011. Gingival and dermal fibroblasts: their similarities and differences revealed from gene expression. J. Biosci. Bioeng. 111: 255–258.
  • Eijl, S., Zhu, Z., Cupitt, J., Gierula, M., Götz, C., Fritsche, E., and Edwards, R. J. 2012. Elucidation of xenobiotic metabolism pathways in human skin and human skin models by proteomic profiling. PLoS One 7: e417–e421.
  • Ferraz, E. R. A., Umbuzeiro, G. A., De-Almeida, G., Caloto-Oliveira, A., Chequer, F. M. D., Zanoni, M. V. B., Dorta, D. J., and Oliveira, D. P. 2010. Differential toxicity of disperse red 1 and disperse red 13 in the Ames test, HepG2 cytotoxicity assay, and Daphnia acute toxicity test. Environ. Toxicol. 26: 489–497.
  • Ferraz, E. R. A., Grando, M. D., and Oliveira, D. P. 2011. The azo dye ç 1 induces DNA damage and cytotoxic effects but does not cause ecotoxic effects in Daphnia similis and Vibrio fischeri. J. Hazard. Mater. 192: 628–633.
  • Ferraz, E. R. A., Li, Z., Boubriak, O., and Oliveira, D. P. 2012. Hepatotoxicity assessment of the azo dyes disperse orange 1 (DO1), disperse red 1 (DR1) and disperse red 13 (DR13) in HEPG2 cells. J. Toxicol. Environ. Health A 75: 991–999.
  • Flamand, N., Marrot, L., Belaidi, J.-P., Bourouf, L., Dourille, E., Feltes, M., and Meunier, J.-R. 2006. Development of genotoxicity test procedures with Episkin, a reconstructed human skin model: Towards new tools for in vitro risk assessment of dermally applied compounds? Mutat. Res. 606: 39–51.
  • Forgacs, E., Cserháti, T., and Oros, G. 2004. Removal of synthetic dyes from wastewaters: A review. Environ. Int. 30: 953–971.
  • Ghalbzouri, A., and Ponec, M. 2004. Diffusible factors released by fibroblasts support epidermal morphogenesis and deposition of basement membrane components. Wound Repair Regen. 12: 359–367.
  • Götz, C., Pfeiffer, R., Tigges, J., Ruwiedel, K., Hübenthal, U., Merk, H. F., Krutmann, J., Edwards, R. J., Abel, J., Pease, C., Goebel, C., Hewitt, N., and Fritsche, E. 2012. Xenobiotic metabolism capacities of human skin in comparison with a 3D-epidermis model and keratinocyte-based cell culture as in vitro alternatives for chemical testing: Phase II enzymes. Exp. Dermatol. 21: 364–369.
  • Groeber, F., Holeiter, M., Hampel, M., Hinderer, S., and Schenke-Layland, K. 2011. Skin tissue engineering-in vivo and in vitro applications. Adv. Drug Deliv. Rev. 63: 352–366.
  • Hartung, T. 2011. From alternative methods to a new toxicology. Eur. J. Pharm. Biopharm. 77: 338–349.
  • Jäger, I., Hafner, C., and Schneider, K. 2004. Mutagenicity of different textile dye products in Salmonella typhimurium and mouse lymphoma cells. Mutat. Res. 561: 35–44.
  • Jean, J., and Duque-Fernandez, A. 2011. Effects of serum-free culture at the air–liquid interface in a human tissue-engineered skin substitute. Tissue Eng. Part A 17: 877–888.
  • Junqueira, L. C., Cossermelli, W., and Brentani, R. 1978. Differential staining of collagens type I, II and III by Sirius red and polarization microscopy. Arch. Histol. Jpn. 41: 267–274.
  • Kumaravel, T. S., and Jha, A. N. 2006. Reliable Comet assay measurements for detecting DNA damage induced by ionising radiation and chemicals. Mutat. Res. 605: 7–16.
  • Kumaravel, T. S., Vilhar, B., Faux, S. P., and Jha, A. N. 2009. Comet assay measurements: A perspective. Cell Biol. Toxicol. 25: 53–64.
  • Lademann, J., Patzelt, A., Worm, M., Richter, H., Sterry, W., and Meinke, M. 2009. Analysis of in vivo penetration of textile dyes causing allergic reactions. Laser Phys. Lett. 6: 759–763.
  • Lech, K., Wilicka, E., Witowska-Jarosz, J., and Jarosz, M. 2013. Early synthetic dyes-a challenge for tandem mass spectrometry. J. Mass Spectrom. 48: 141–147.
  • Leme, D. M., de Oliveira, G. A., Meireles, G., Dos Santos, T. C., Zanoni, M. V., and de Oliveira, D. P. 2014a. Genotoxicological assessment of two reactive dyes extracted from cotton fibres using artificial sweat. Toxicol. In Vitro 28: 31–38.
  • Leme, D. M., de Oliveira, G. A., Meireles, G., Brito, L. B., Rodrigues, L. B., and de Oliveira, D. P. 2014b. Eco- and geno-toxicological assessments of two reactive textile dyes. J Toxicol. Environ Health A doi.org/10.1080/15287394.2014.971208.
  • Lima, R. O. A., Bazo, A. P., Salvadori, D. M. F., Rech, C. M., Oliveira, D. P., and Umbuzeiro, G. A. 2007. Mutagenic and carcinogenic potential of a textile azo dye processing plant effluent that impacts a drinking water source. Mutat. Res. 626: 53–60.
  • Mazzoleni, G., Di Lorenzo, D., and Steimberg, N. 2009. Modelling tissues in 3D: The next future of pharmaco-toxicology and food research? Genes Nutr. 4: 13–22.
  • Meinke, M., Abdollahnia, M., Gähr, F., Platzek, T., Sterry, W., and Lademann, J. (2009). Migration and penetration of a fluorescent textile dye into the skin—In vivo versus in vitro methods. Exp. Dermatol. 18: 789–792.
  • Miller, C., Septier, D., Bonnefoix, M., Leolle, S., Lebreton-Decoster, C., Coulomb, B., Pellat, B., and Godeau, G. 2002. Human dermal and gingival fibroblasts in a three-dimensional culture: a comparative study on matrix remodeling. Clin. Oral Invest. 6: 39–50.
  • Ngo, M. A., and Maibach, H. I. 2010. Dermatotoxicology: Historical perspective and advances. Toxicol. Appl. Pharmacol. 243: 225–238.
  • Nguyen, T. D., Cornillet-Stoupy, J., Gillery, P., and Maquart, F. X. 1991. Effects of gamma irradiation on dermal equivalents in vitro. Experientia 47: 725–728.
  • Nohynek, G. J., Duche, D., Garrigues, A., Meunier, P. A., Toutain, H., and Leclaire, J. 2005. Under the skin: Biotransformation of para-aminophenol and para-phenylenediamine in reconstructed human epidermis and human hepatocytes. Toxicol. Lett. 158: 196–212.
  • Novotný, C., Dias, N., Kapanen, A., Malachová, K., Vándrovcová, M., Itävaara, M., and Lima, N., 2006. Comparative use of bacterial, algal and protozoan tests to study toxicity of azo- and anthraquinone dyes. Chemosphere 63: 1436–1442.
  • Oliveira, D. P., Carneiro, P. A., Sakagami, M. K., Zanoni, M. V. B., and Umbuzeiro, G. A. 2007. Chemical characterization of a dye processing plant effluent—Identification of the mutagenic components. Mutat. Res. 626: 135–142.
  • Oliveira, G. A., Ferraz, E. R., Chequer, F. M., Grando, M. D., Angeli, J. P., Tsuboy, M. S., Marcarini, J. C., Mantovani, M. S., Osugi, M. E., Lizier, T. M., Zanoni, M. V., and Oliveira, D. P. 2010. Chlorination treatment of aqueous samples reduces, but does not eliminate, the mutagenic effect of the azo dyes disperse red 1, disperse red 13 and disperse orange 1. Mutat. Res. 703: 200–208.
  • Oliveira, G. A. R., Lapuente, J., Leme, D. M., Ferraz, E. R. A., Meireles, G., and Oliveira, D. P. 2013. New paradigms for environmental assessment: An ecotoxicological and genetic approach. In Advances in environmental research, ed. J. A. Daniels, 1–42. New York, NY: Nova Science.
  • Pampaloni, F., and Stelzer, E. 2010. Three-dimensional cell cultures in toxicology. Biotechnol. Genet. Eng. Rev. 26: 117–138.
  • Patlolla, A., Knighten, B., and Tchounwou, P. 2010. Multi-walled carbon nanotubes induce cytotoxicity, genotoxicity and apoptosis in normal human dermal fibroblast cells. Ethnic. Dis. 20: 1–17.
  • Platt, K. L., Aderhold, S., Kulpe, K., and Fickler, M. 2008. Unexpected DNA damage caused by polycyclic aromatic hydrocarbons under standard laboratory conditions. Mutat. Res. 650: 96–103.
  • Pfuhler, S., Kirst, A., Aardema, M., Banduhn, N., Goebel, C., Araki, D., Costabel-Farkas, M., Dufour, E., Fautz, R., Harvey, J., Hewitt, N.J., Hibatallah, J., Carmichael, P., Macfarlane, M., Reisinger, K., Rowland, J., Schellauf, F., Schepky, A., and Scheel, J. 2010. A tiered approach to the use of alternatives to animal testing for the safety assessment of cosmetics: genotoxicity. A COLIPA analysis. Regul. Toxicol. Pharmacol. 57: 315–324.
  • Ponec, M., Gibbs, S., Weerheim, A., Kempenaar, J., Mulder, A., and Mommaas, A. M. 1997. Epidermal growth factor and temperature regulate keratinocyte differentiation. Arch. Dermatol. Res. 289: 317–26.
  • Poumay, Y., and Coquette, A. 2007. Modelling the human epidermis in vitro: Tools for basic and applied research. Arch. Dermatol. Res. 298: 361–369.
  • Poumay, Y., Dupont, F., Marcoux, S., Leclercq-Smekens, M., Hérin, M., and Coquette, A. 2004. A simple reconstructed human epidermis: Preparation of the culture model and utilization in in vitro studies. Arch. Dermatol. Res. 296: 203–211.
  • Primo, F. L., da Costa Reis, M. B., Porcionatto, M. A., and Tedesco, A. C. 2011. In vitro evaluation of chloroaluminum phthalocyanine nanoemulsion and low-level laser therapy on human skin dermal equivalents and bone marrow mesenchymal. Curr. Med. Chem. 18: 3376–3381.
  • Reus, A. A., Usta, M., and Krul, C. A. 2012. The use of ex vivo human skin tissue for genotoxicity testing. Toxicol. Appl. Pharmacol. 261: 154–163.
  • Reus, A. A., Reisinger, K., Downs, T. R., Carr, G. J., Zeller, A., Corvi, R., Krul, C. A., and Pfuhler, S. 2013. Comet assay in reconstructed 3D human epidermal skin models—Investigation of intra- and inter-laboratory reproducibility with coded chemicals. Mutagenesis 28:709–720.
  • Rich, L., and Whittaker, P. 2005. Collagen and picrosirius red staining: A polarized light assessment of fibrillar hue and spatial distribution. Braz. J. Morphol. Sci 22: 97–104
  • Rowling, P. J., Raxworthy, M. J., Wood, E. J., Kearney, J. N., and Cunliffe, W. J. 1990. Fabrication and reorganization of dermal equivalents suitable for skin grafting after major cutaneous injury. Biomaterials 11: 181–185.
  • Sadek, C. M., and Allen-Hoffmann, B. L. 1994. Cytochrome P450IA1 is rapidly induced in normal human keratinocytes in the absence of xenobiotics. J. Biol. Chem. 269: 16067–16074.
  • Schoop, V. M., Mirancea, N., and Fusenig, N. E. 1999. Epidermal organization and differentiation of HaCaT keratinocytes in organotypic coculture with human dermal fibroblasts. J. Invest. Dermatol. 112: 343–353.
  • Singh, N. P., Tice, R. R., Stephens, R. E., and Schneider, E. L. 1991. A microgel electrophoresis technique for the direct quantitation of DNA damage and repair in individual fibroblasts cultured on microscope slides. Mutat. Res. 252: 289–296.
  • Strober, W. 2001. Trypan blue exclusion test of cell viability. Current Protocol Immunology, Appendix 3: Appendix 3B. doi:10.1002/0471142735.ima03bs21
  • Svensson, C. K. 2009. Biotransformation of drugs in human skin. Drug Metab. Dispos. 37: 247–253.
  • Tice, R. R., Agurell, E., Anderson, D., Burlinson, B., Hartmann, A., Kobayashi, H., Miyamae, Y., Rojas, E., Ryu, J. C., and Sasaki, Y. F. 2000. Single cell gel/comet assay: Guidelines for in vitro and in vivo genetic toxicology testing. Environ. Mol. Mutagen. 35: 206–221.
  • Tigges, J., Weighardt, H., Wolff, S., Götz, C., Förster, I., Kohne, Z., Huebenthal, U., Merk, H. F., Abel, J., Haarmann-Stemmann, T., Krutmann, J., and Fritsche, E. 2013. Aryl hydrocarbon receptor repressor (AhRR) function revisited: Repression of CYP1 activity in human skin fibroblasts is not related to AhRR expression. J. Invest. Dermatol. 133: 87–96.
  • Tobin, D. J. 2006. Biochemistry of human skin–our brain on the outside. Chem. Soc. Rev. 35: 52–67.
  • Toyoizumi, T., Ohta, R., Nakagawa, Y., Tazura, Y., Kuwagata, M., Noguchi, S., and Yamakage, K. 2011. Use of the in vivo skin comet assay to evaluate the DNA-damaging potential of chemicals applied to the skin. Mutat. Res. 726: 175–180.
  • Toyoizumi, T., Ohta, R., Kawakami, K., Nakagawa, Y., Tazura, Y., Kuwagata, M., Noguchi, S., Sui, H., and Yamakage, K. 2012a. Usefulness of combined in vivo skin comet assay and in vivo skin micronucleus test. Mutat. Res. 743: 42–51.
  • Toyoizumi, T., Watanabe, M., Sui, H., Nakagawa, Y., Ohta, R., and Yamakage, K. 2012b. Evaluation of effect during cell isolation process in alkaline comet assay using epidermal skin cells. J. Toxicol. Sci. 37: 1267–1273.
  • Tsuboy, M. S., Angeli, J. P. F., Mantovani, M. S., Knasmüller, S., Umbuzeiro, G. A., and Ribeiro, L. R. 2007. Genotoxic, mutagenic and cytotoxic effects of the commercial dye CI Disperse Blue 291 in the human hepatic cell line HepG2. Toxicol. In Vitro 21: 1650–1655.
  • Uhl, M., Helma, C., and Knasmüller, S. 1999. Single-cell gel electrophoresis assays with human-derived hepatoma (Hep G2) cells. Mutat. Res. 441: 215–224.
  • Umbuzeiro, G. A., Freeman, H. S., Warren, S. H., Oliveira, D. P., Terao, Y., Watanabe, T.,and Claxton, L. D. 2005. The contribution of azo dyes to the mutagenic activity of the Cristais River. Chemosphere 60: 55–64.
  • Venturini, S., and Tamaro, M. 1979. Mutagenicity of anthraquinone and azo dyes in Ames’ Salmonella typbimurium test. Mutat. Res. 68: 307–312.
  • Wischermann, K., Boukamp, P., and Schmezer, P. 2007. Improved alkaline comet assay protocol for adherent HaCaT keratinocytes to study UVA-induced DNA damage. Mutat. Res. 630: 122–128.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.