173
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

In Vivo Effects of Naproxen, Salicylic Acid, and Valproic Acid on the Pharmacokinetics of Trichloroethylene and Metabolites in Rats

, &
Pages 671-684 | Received 16 Oct 2014, Accepted 16 Feb 2015, Published online: 03 Jun 2015

REFERENCES

  • Abbott, F. S., and Anari, M. R. 1999. Chemistry and biotransformation. In Milestones in drug therapy—Valproate, 47–75, ed. W. Loscher. Basel, Switzerland: Birkhauser Verlag.
  • Agency for Toxic Substances and Disease Registry. 2013. Addendum of the toxicological profile for trichloroethylene Atlanta, GA: Division of Toxicology and Human Health Sciences.
  • Al-Shareef, A., Buss, D. C., Shetty, H. G. M., Ali, N., and Routledge, P. A. 1997. The effect of repeated-dose activated charcoal on the pharmacokinetics of sodium valproate in healthy volunteers. Br. J. Clin. Pharmacol. 43: 109–111.
  • Argikar, U. A, and Remmel, R. P. 2009. Effect of aging on glucuronidation of valproic acid in human liver microsomes and the role of UDP-glucuronosyltransferase UGT1A4, UGT1A8, and UGT1A10. Drug Metab. Dispos. 37: 229–236.
  • Bull, R. J., Sanchez, I. M., Nelson, M. A., Larson, J. L., and Lansing, A. J. 1990. Liver tumor induction in B6C3F1 mice by dichloroacetate and trichloroacetate. Toxicology 63:341–359.
  • Caldwell, J., O’Gorman, J., and Smith, R. L. 1980. Inter-individual differences in the glycine conjugation of salicylic acid (proceedings). Br. J. Clin. Pharmacol. 9: 114–116.
  • Cheikh Rouhou, M., and Haddad, S. 2013. Modulation of trichloroethyelene in vitro metabolism by different drugs in human. Toxicol. In Vitro 27: 34–43.
  • Cheikh Rouhou, M., Rheault, I., and Haddad, S. 2012. Modulation of trichloroethylene in vitro metabolism by different drugs in rats. Toxicol. In Vitro 27: 34–43.
  • Chiu, W. A., Micallef, S., Monster, A. C., and Bois, F. Y. 2007. Toxicokinetics of inhaled trichloroethylene and tetrachloroethylene in humans at 1 ppm: Empirical results and comparisons with previous studies. Toxicol. Sci. 95: 23–36.
  • Clewell, H. J. 3rd, Gentry, P. R., Covington, T. R., and Gearhart, J. M. 2000. Development of a physiologically based pharmacokinetic model of trichloroethylene and its metabolites for use in risk assessment. Environ. Health Perspect. 108: 283–305.
  • Clewell, R. A., and Clewell, H. J. 2008. Development and specification of physiologically based pharmacokinetic models for use in risk assessment. Regul. Toxicol. Pharmacol. 50: 129–143.
  • Covington, T. R., Clewell, H. J., and Fisher, J. W. 2004. Development of a physiologically-based pharmacokinetic model of trichloroethylene and its metabolites for use in risk assessment. Robins AFB, GA: Air Force Research Laboratory.
  • Cruz, L., Castañeda-Hernández, G., and Navarrete, A. 1999. Ingestion of chilli pepper (Capsicum annuum) reduces salicylate bioavailability after oral aspirin administration in the rat. Can. J. Physiol. Pharmacol. 77: 441–446.
  • Cummings, A. J., Martin, B. K., and Renton, R. 1966. The elimination of salicylic acid in man: Serum concentrations and urinary excretion rates. Br. J. Pharmacol. 26: 461–467.
  • Dekant, W., Koob, M., and Henschler, D. 1990. Metabolism of trichloroethylene in vivo and in vitro: Evidence for activation by glutathione conjugation. Chem. Biol. Interact. 73: 89–101.
  • DrugBank. 2015. http://www.drugbank.ca/drugs/DB00788 ( accessed February 15, 2015).
  • Emudianughe, T. S., Oduleye, S. O., Ebadan, J. E. E., and Eneji, S. D. 1986. Sex differences in salicylic acid metabolism in nigerian subjects. Xenobiotica 16: 177–179.
  • Fisher, J. W., Mahle, D., and Abbas, R. 1998. A human physiologically based pharmacokinetic model for trichloroethylene and its metabolites, trichloroacetic acid and free trichloroethanol. Toxicol. Appl. Pharmacol. 152: 339–359.
  • Green, T., and Prout, M. S. 1985. Species differences in response to trichloroethylene. II. biotransformation in rats and mice. Toxicol. Appl. Pharmacol. 79: 401–411.
  • Haddad, S., and Krishnan, K. 1998. Physiological modeling of toxicokinetic interactions: Implications for mixture risk assessment. Environ. Health Perspect. 106: 1377–1384.
  • Hariton, C., Ciesielski, L., Simler, S., Valli, M., Jadot, G., Gobaille, S., Mesdjian, E., and Mandel, P. 1984. Distribution of sodium valproate and GABA metabolism in CNS of the rat. Biopharm. Drug Dispos. 5: 409–414.
  • Herren-Freund, S. L., Pereira, M. A., Khoury, M. D., and Olson, G. 1987. The carcinogenicity of trichloroethylene and its metabolites, trichloroacetic acid and dichloroacetic acid, in mouse liver. Toxicol. Appl. Pharmacol. 90: 183–189.
  • Hutt, A. J., Caldwell, J., and Smith, R. L. 1986. The metabolism of aspirin in man: A population study. Xenobiotica 16: 239–249.
  • Ito, M., Ikeda, Y., Arnez, J. G., Finocchiaro, G., and Tanaka, K. 1990. The enzymatic basis for the metabolism and inhibitory effects of valproic acid: dehydrogenation of valproyl-CoA by 2-methyl-branched-chain acyl-CoA dehydrogenase. Biochim. Biophys. Acta 1034: 213–218.
  • Kiang, T. K., Ho, P. C., Anari, M. R., Tong, V., Abbott, F. S., and Chang, T. K. 2006. Contribution of CYP2C9, CYP2A6, and CYP2B6 to valproic acid metabolism in hepatic microsomes from individuals with the CYP2C9* 1/* 1 genotype. Toxicol. Sci. 94: 261–271.
  • Klotz, U., and Antonin, K. H. 1977. Pharmacokinetics and bioavailability of sodium valproate. Clin. Pharmacol. Ther. 21: 736–743.
  • Larson, J. L., and Bull, R. J. 1989. Effect of ethanol on the metabolism of trichloroethylene. J. Toxicol. Environ. Health 28: 395–406.
  • Lash, L. H., Fisher, J. W., Lipscomb, J. C., and Parker, J. C. 2000a. Metabolism of trichloroethylene. Environ. Health Perspect. 108:177–200.
  • Lash, L. H., Parker, J. C., and Scott, C. 2000b. Modes of action of trichloroethylene for kidney tumorigenesis. Environ. Health Perspect. 108: 225–240.
  • Lash, L. H., Putt, D. A., and JParker, J. C. 2006. metabolism and tissue distribution of orally administered trichloroethylene in male and female rats: Identification of glutathione and cytochrome P-4500-derived metabolites in liver, kidney, blood and urine. J. Toxicol. Environ. Health A 69: 1285–1309.
  • Levy, R. H., and Koch, K. M. 1982. Drug interactions with valproic acid. Drugs 24: 543–556.
  • Lipscomb, J. C., Garrett, C. M., and Snawder, J. E. 1997. Cytochrome P450-dependent metabolism of trichloroethylene: Interindividual differences in humans. Toxicol. Appl. Pharmacol. 142: 311–318.
  • Müller, G., Spassowski, M., and Henschler, D. 1975. Metabolism of trichloroethylene in man. III. Interaction of trichloroethylene and ethanol. Arch. Toxicol. 33: 173–189.
  • Muralidhara, S., and Bruckner, J. V. 1999. Simple method for rapid measurement of trichloroethylene and its major metabolites in biological samples. J. Chromatogr. B Biomed. Sci. Appl. 732: 145–153.
  • Nakajima, T., Wang, R. S., Elovaara, E., Park, S. S., Gelboin, H. V., and Vainio, H. 1992. A comparative study on the contribution of cytochrome P450 isozymes to metabolism of benzene, toluene and trichloroethylene in rat liver. Biochem. Pharmacol. 43: 251–257.
  • Ni, Y.-C., Wong, T.-Y., Lloyd, R. V., Heinze, T. M., Shelton, S., Casciano, D., Kadlubar, F. F., and Fu, P. P. 1996. Mouse liver microsomal metabolism of chloral hydrate, trichloroacetic acid, and trichloroethanol leading to induction of lipid peroxidation via a free radical mechanism. Drug Metab Dispos. 24: 81–90.
  • Niazi, S. K., Alam, S. M., and Ahmad, S. I. 1996. Dose dependent pharmacokinetics of naproxen in man. Biopharm. Drug Dispos. 17: 355–361.
  • Patel, D. K., Hesse, A., Ogunbona, A., Notarianni, L. J., and Bennett, P. N. 1990. Metabolism of aspirin after therapeutic and toxic doses. Hum. Exp. Toxicol. 9: 131–136.
  • Plewka, A., Zielińska-Psuja, B., Kowalówka-Zawieja, J., Nowaczyk-Dura, G., Plewka, D., Wiaderkiewicz, A., Kamiñski, M., and Orłowski, J. 2000. Influence of acetaminophen and trichloroethylene on liver cytochrome P450-dependent monooxygenase system. Acta Biochim. Pol. 47: 1129–1136.
  • Sadeque, A. J. M., Fisher, M. B., Korzekwa, K. R., Gonzalez, F. J., and Rettie, A. E. 1997. Human CYP2C9 and CYP2A6 mediate formation of the hepatotoxin 4-ene-valproic acid. J. Pharmacol. Exp. Ther. 283: 698–703.
  • Sevelius, H., Runkel, R., Segre, E., and Bloomfield, S. S. 1980. Bioavailability of naproxen sodium and its relationship to clinical analgesic effects. Br. J. Clin. Pharmacol. 10: 259–263.
  • Silva, M. F. B., Aires, C. C. P., M. Luis, P. B., Ruiter, J. P. N., Ijlst, L., Duran, M., Wanders, R. J. A., and de Almeida, I. T. 2008. Valproic acid metabolism and its effects on mitochondrial fatty acid oxidation: A review. J. Inherit. Metab. Dis. 31: 205–216.
  • Spiller, H. A., Krenzelok, E. P., Klein-Schwartz, W., Winter, M. L., Weber, J. A., Sollee, D. R., Bangh, S. A., and Griffith, J. R. 2000. Multicenter case series of valproic acid ingestion: Serum concentrations and toxicity. J. Toxicol. Clin. Toxicol. 37: 755–760.
  • Stenner, R. D., Merdink, D. K., Stevens, D. L., Springer, D. L., and Bull, R. J. 1997. Enterohepatic recirculation of trichloroethanol glucuronide as a significant source of trichloroacetic acid. metabolites of trichloroethylene. Drug Metab. Dispos. 25: 529–535.
  • Sztajnkrycer, M. D. 2002. Valproic acid toxicity: Overview and management. J. Toxicol. Clin. Toxicol. 40: 789–801.
  • Tan, L., J.-T. Yu, Sun, Y.-P., Ou, J.-R., Song, J.-H., and Yu, Y. 2010. The influence of cytochrome oxidase CYP2A6, CYP2B6, and CYP2C9 polymorphisms on the plasma concentrations of valproic acid in epileptic patients. Clin. Neurol. Neurosurg. 112: 320–323.
  • Toothaker, R. D., Barker, S. H., Gillen, M. V., Helsinger, S. A., Kindberg, C. G., Hunt, T. L., and Powell, J. H. 2000. Absence of pharmacokinetic interaction between orally co-administered naproxen sodium and diphenhydramine hydrochloride. Biopharm. Drug Dispos. 21: 229–233.
  • U.S. Environmental Protection Agency. 1985. Health assessment document for trichloroethylene. Final report. Washington, DC: U.S. EPA.
  • Watanabe, K., and Bois, F. Y. 1996. Interspecies extrapolation of physiological pharmacokinetic parameter distributions. Risk Anal 16: 741–754.
  • Welsch, F., Blumenthal, G. M., and Conolly, R. B. 1995. Physiologically based pharmacokinetic models applicable to organogenesis: Extrapolation between species and potential use in prenatal toxicity risk assessments. Toxicol. Lett. 83: 539–547.
  • Wu, K. L., and Berger, T. 2007. Trichloroethylene metabolism in the rat ovary reduces oocyte fertilizability. Chem. Biol. Interact. 170: 20–30.
  • Yoo, H. S., Bradford, B. U., Kosyk, O., Shymmonyak, S., Uehara, T., Collins, L. B., Bodnar, W. M., Ball, L. M., Gold, A., and Rusyn, I. 2015. Comparative analysis of the relationship between tricholoroethylene metabolism and tissue-specific toxicity among inbred mouse strains: Liver effects. J. Toxicol. Environ. Health A 78: 15–31.
  • Zieliñska-Psuja, B., Orowski, J., Plewka, A., Kamiñski, M., and Kowalówka-Zawieja, J. 2001. Metabolic interactions between acetylsalicylic acid, xylene and trichloroethylene in rats. Pol. J. Environ. Stud. 1: 43–49.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.