694
Views
31
CrossRef citations to date
0
Altmetric
Original Articles

Predicting oral relative bioavailability of arsenic in soil from in vitro bioaccessibility

, , , , , , , , , , & show all
Pages 165-173 | Received 08 Sep 2015, Accepted 17 Dec 2015, Published online: 30 Mar 2016

References

  • Becker, B.J., and Wo, M. 2007. The synthesis of regression slopes in metal-analysis. Stat. Sci. 22: 414–429.
  • Bradham, K. D., Scheckel, K. G., Nelson, C. M., Seales, P. E., Lee, G. E., Hughes, M. F., Miller, B. W., Yeow, A., Gilmore, T., Serda, S. M., Harper, S., and Thomas, D. J. 2011. Relative bioavailability and bioaccessibility and speciation of arsenic in contaminated soils. Environ. Health Perspect. 119: 1629–1634.
  • Bradham, K. D., Diamond, G. L., Scheckel, K. G., Hughes, M. F., Casteel, S. W., Miller, B. W., Klotzbach, J. M., Thayer, W. C., and Thomas, D. J. 2013. Mouse assay for determination of arsenic bioavailability in contaminated soils. J. Toxicol. Environ. Health A 76: 815–826.
  • Bradham, K. D., Nelson, C., Juhasz, A. L., Smith, E., Scheckel, K., Obenour, D. R., Miller, B. W., and Thomas, D. J. 2015. Independent data validation of an in vitro method for the prediction of the relative bioavailability of arsenic in contaminated soils. Environ. Sci. Technol. 49: 6313–6318.
  • Brattin, W., and Casteel, S. 2013. Measurement of arsenic relative bioavailability in swine. J. Toxicol. Environ. Health A 76: 449–457.
  • Brattin, W., Drexler, J., Lowney, Y., Griffin, S., Diamond, G., and Woodbury, L. 2013. An in vitro method for estimation of arsenic relative bioavailability in soil. J. Toxicol. Environ. Health A 76: 458–478.
  • Denys, S., Caboche, J., Tack, K., Rychen, G., Wragg, J., Cave, M., Jondreville, C., and Feidt, C. 2012. In vivo validation of the unified BARGE method to assess the bioaccessibility of arsenic, antimony, cadmium, and lead in soils. Environ. Sci. Technol. 46: 6252–6260.
  • Drexler, J. W., and Brattin, W. J. 2007. An in vitro procedure for estimation of lead relative bioavailability: With validation. Hum. Ecol. Risk. Assess. 13: 383–401.
  • Juhasz, A. L., Smith, E., Weber, J., Rees, M., Rofe, A., Kuchel, T., Sansom, L., and Naidu, R. 2007a. In vitro assessment of arsenic bioaccessibility in contaminated (anthropogenic and geogenic) soils. Chemosphere 69: 69–78.
  • Juhasz, A. L., Smith, E., Weber, J., Rees, M., Rofe, A., Kuchel, T., Sansom, L., and Naidu, R. 2007b. Comparison of in vivo and in vitro methodologies for the assessment of arsenic bioavailability in contaminated soils. Chemosphere 69: 961–966.
  • Juhasz, A. L., Weber, J., Smith, E., Naidu, R., Rees, M., Rofe, A., Kuchel, T., and Sansom, L. 2009. Assessment of four commonly employed in vitro arsenic bioaccessibility assays for predicting in vivo relative arsenic bioavailability in contaminated soils. Environ. Sci. Technol. 43: 9487–9494.
  • Juhasz, A.L., Weber, J., and Smith, E. 2011. Predicting arsenic relative bioavailability in contaminated soils using meta-analysis and relative bioavailability – Bioaccessibility regression models. Environ. Sci. Technol. 45: 10676–10683.
  • Juhasz, A. L., Herde, P., Herde, C., Boland, J., and Smith, E. 2014a. Validation of the predictive capabilities of the Sbrc-G in vitro assay for estimating arsenic relative bioavailability in contaminated soils. Environ. Sci. Technol. 48: 12962–12969.
  • Juhasz, A. L., Smith, E., Nelson, C., Thomas, D. J., and Bradham, K. 2014b. Variability associated with As in vivo–in vitro correlations when using different bioaccessibility methodologies. Environ. Sci. Technol. 48: 11646–11653.
  • Makris, K. C., Quazi, S., Nagar, R., Sarkar, D., Datta, R., and Sylvia, V. L. 2008. In vitro model improves the prediction of soil arsenic bioavailability: Worst-case scenario. Environ. Sci. Technol. 42: 6278–6284.
  • Medlin, E. A. 1997. An in vitro method for estimating the relative bioavailability of lead in humans. Master’s thesis, Department of Geological Sciences, University of Colorado, Boulder, CO.
  • Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. 1992. Numerical recipes in C. The art of scientific computing. New York, NY: Cambridge University Press.
  • Rees, M., Sansom, L., Rofe, A., Juhasz, A. L., Smith, E., Weber, J., Naidu, R., and Kuchel, T. 2009. Principles and application of an in vivo swine assay for the determination of arsenic bioavailability in contaminated matrices. Environ. Geochem. Health 31: 167–177.
  • Roberts, S. M., Munson, J. W., Lowney, Y. W., and Ruby, M. V. 2007. Relative oral bioavailability of arsenic from contaminated soils measured in the cynomolgus monkey. Toxicol. Sci. 95: 281–288.
  • Rodriguez, R. R., Basta, N. T., Casteel, S. W., and Pace, L. W. 1999. An in vitro gastrointestinal method to estimate bioavailable arsenic in contaminated soils and solid media. Environ. Sci. Technol. 33: 642–649.
  • Ruby, M. W., Davis, A., Schoof, R., Eberle, S., and Sellstone, C. M. 1996. Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environ. Sci. Technol. 30: 422–430.
  • Ruby, M. V., Schoof, R., Brattin, W., Goldage, M., Post, G., Harnois. M., Mosby, D. E., Casteel, S.W., Berti, W., Carpenter, M., Edwards, D., Cragin, D., and Chappell, E. 1999. Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment. Environ. Sci. Technol. 33: 3697–3705.
  • Scheckel, K. G., Chaney, R. L., Basta, N. T., and Ryan, J.A. 2009. Advances in assessing bioavailability of metal(loid)s in contaminated soils. Adv. Agron. 104: 1–52.
  • Thirumalai, K., Singh, A., and Ramesh, R. 2011. A MATLABTM code to perform weghted linear regression with (correlated or uncorrelated) error sin bivariate data. J. Geol Soc. India. 77: 377–380.
  • U.S. Environmental Protection Agency. 1989. Risk assessment guidance for Superfund (RAGS). Volume I. Human health evaluation manual (Part A). Washington, DC: U.S. Environmental Protection Agency, Office of Emergency and Remedial Response. EPA/540/1-89/002. December. http://www.epa.gov/swerrims/riskassessment/ragsa/pdf/rags-vol1-pta_complete.pdf
  • U.S. Environmental Protection Agency. 2007a. Framework for metals risk assessment. Washington, DC: U.S. Environmental Protection Agency, Office of the Science Advisor. EPA 120/R-07/001. http://www.epa.gov/raf/metalsframework/pdfs/metals-risk-assessment-final.pdf
  • U.S. Environmental Protection Agency. 2007b. Guidance for evaluating the oral bioavailability of metals in soils for use in human health risk assessment. Washington, DC: U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response. OSWER 9285.7-80. http://www.epa.gov/superfund/health/contaminants/bioavailability/bio_guidance.pdf
  • U.S. Environmental Protection Agency. 2007c. Method 6010c. http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/6010c.pdf
  • U.S. Environmental Protection Agency. 2007d. Method 6020A. http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/6020a.pdf
  • U.S. Environmental Protection Agency. 2012a. Compilation and review of data on relative bioavailability of arsenic in soil. Washington, DC: U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response. OSWER 9200.1-113. http://www.epa.gov/superfund/health/contaminants/bioavailability/guidance.htm
  • U.S. Environmental Protection Agency. 2012b. Recommendations for default value for relative bioavailability of arsenic in soil. Washington, DC: U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response. OSWER 9200.1-113. http://www.epa.gov/superfund/health/contaminants/bioavailability/guidance.htm
  • U.S. Environmental Protection Agency. 2012c. Standard operating procedure for an in vitro bioaccessibility assay for lead in soil. Washington, DC: U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response. OSWER 9200.1-86. November. http://www.epa.gov/superfund/health/contaminants/bioavailability/guidance.htm
  • Wragg, J., Cave, M., Basta, N., Brandon, E., Casteel, S., Denys, S., Gron, C., Oomen, A., Reimer, K., Tack, K., and Van der Wiele, T. 2011. An inter-laboratory trial of the unified BARGE bioaccessibility method for arsenic, cadmium, and lead in soil. Sci. Total Environ. 409: 4016–4030.
  • York, D., Evensen, M., Martinez, M., and Delgado, J. 2004. Unified equations for the slope, intercept and standard errors of the best straight line. Am. J. Phys. 72: 367–375.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.