325
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Protective effects of niacin against methylmercury-induced genotoxicity and alterations in antioxidant status in rats

, , , , &
Pages 174-183 | Received 22 Aug 2015, Accepted 27 Sep 2015, Published online: 25 Feb 2016

References

  • Aebi, H. 1984. Catalase in vitro. Methods Enzymol. 105: 121–126.
  • Ali, E. H., McJunkin, B., Jubelirer, S., and Hood, W. 2013. Niacin induced coagulopathy as a manifestation of occult liver injury. WV Med. J. 109: 12–14.
  • Barbieri, F. L., and Gardon, J. 2009. Hair mercury levels in Amazonian populations: Spatial distribution and trends. Int. J. Health Geogr. 8: 71.
  • Barcelos, G. R., Angeli, J. P., Serpeloni, J. M., Grotto, D., Rocha, B. A., Bastos, J. K., Knasmuller, S., and Junior, F. B. 2011. Quercetin protects human-derived liver cells against mercury-induced DNA-damage and alterations of the redox status. Mutat. Res. 726: 109–115.
  • Barcelos, G. R., Grotto, D., Serpeloni, J. M., Aissa, A. F., Antunes, L. M., Knasmuller, S., and Barbosa, F., Jr. 2012a. Bixin and norbixin protect against DNA-damage and alterations of redox status induced by methylmercury exposure in vivo. Environ. Mol. Mutagen. 53: 535–541.
  • Barcelos, G. R. M., de Marco, K. C., Grotto, D., Valentini, J., Garcia, S. C., Braga, G. U. L., and Barbosa, F. 2012b. Evaluation of glutathione S-transferase GSTM1 and GSTT1 polymorphisms and methylmercury metabolism in an exposed Amazon population. J. Toxicol. Environ. Health A 75: 960–970.
  • Barcelos, G. R. M, Grotto, D., de Marco, K. C., Valentini, J., Lengert, A. V., de Oliveira, A. A. S., Garcia, S. C., Braga, G. U. L., Engströmd, K. S., Cólus, I. C., Broberg, K., and Barbosa, F., Jr. 2013. Polymorphisms in glutathione-related genes modify mercury concentrations and antioxidant status in subjects environmentally exposed to methylmercury. Sci. Total Environ. 463–464:319–325.
  • Bartleman, A. P., Jacobs, R., and Kirkland, J. B. 2008. Niacin supplementation decreases the incidence of alkylation-induced nonlymphocytic leukemia in Long-Evans rats. Nutr. Cancer 60: 251–258.
  • Batista, B. L., Grotto, D., Rodrigues, J. L., Souza, V. C., and Barbosa, F., Jr. 2009. Determination of trace elements in biological samples by inductively coupled plasma mass spectrometry with tetramethylammonium hydroxide solubilization at room temperature. Anal. Chim. Acta 646: 23–29.
  • Bhuvaneswari, V., and Nagini, S. 2005. Lycopene: A review of its potential as an anticancer agent. Curr. Med. Chem. Anticancer Agents 5: 627–635.
  • Carneiro, M. F., Grotto, D., and Barbosa, F., Jr. 2014. Inorganic and methylmercury levels in plasma are differentially associated with age, gender, and oxidative stress markers in a population exposed to mercury through fish consumption. J. Toxicol. Environ. Health A 77: 69–79.
  • Cebulska-Wasilewska, A., Panek, A., Zabinski, Z., Moszczynski, P., and Au, W. W. 2005. Occupational exposure to mercury vapour on genotoxicity and DNA repair. Mutat. Res. 586:102–114
  • Cho, K. H., Kim, H. J., Rodriguez-Iturbe, B., and Vaziri, N. D. 2009. Niacin ameliorates oxidative stress, inflammation, proteinuria, and hypertension in rats with chronic renal failure. Am. J. Physiol. Renal Physiol. 297: F106–F113.
  • Clarkson, T. W., and Magos, L. 2006. The toxicology of mercury and its chemical compounds. Crit. Rev. Toxicol. 36: 609–662.
  • da Silva, J., de Freitas, T. R., Heuser, V., Marinho, J. R., and Erdtmann, B. 2000. Genotoxicity biomonitoring in coal regions using wild rodent Ctenomys torquatus by Comet assay and micronucleus test. Environ. Mol. Mutagen. 35: 270–278.
  • da Silva, D. A., Barbosa, F., Jr., and Scarano, W. R. 2012. Oral exposure to methylmercury modifies the prostatic microenvironment in adult rats. Int. J. Exp. Pathol. 93:354–360.
  • de Marco, K. C., Passos, C. J., Sertorio, J., Tanus-Santos, J. E., and Barbosa, F. Jr., 2010. Environmental exposure to methylmercury is associated with a decrease in nitric oxide production. Basic Clin. Pharmacol. Toxicol. 106: 411–415.
  • de Maria, C. A. B., and Moreira, R. F. A. 2011. A Intrigante química da Niacina—Uma revisão crítica. Química Nova 34: 1739–1752.
  • Dorea, J. G., Marques, R. C., and Abreu, L. 2014. Milestone achievement and neurodevelopment of rural Amazonian toddlers (12 to 24 months) with different methylmercury and ethylmercury exposure. J. Toxicol. Environ. Health A 77: 1–13.
  • Dou, X., Shen, C., Wang, Z., Li, S., Zhang, X., and Song, Z. 2013. Protection of nicotinic acid against oxidative stress-induced cell death in hepatocytes contributes to its beneficial effect on alcohol-induced liver injury in mice. J. Nutr. Biochem. 24: 1520–1528.
  • Ellman, G. L. 1959. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82: 70–77.
  • Farella, N., Lucotte, M., Davidson, R., and Daigle, S. 2006. Mercury release from deforested soils triggered by cation enrichment. Sci. Total Environ. 368: 19–29.
  • Figueiredo, N. L., Areias, A., Mendes, R., Canário, J., Duarte, A., and Carvalho, C. 2014. Mercury-resistant bacteria from salt marsh of Tagus Estuary: The influence of plants presence and mercury contamination levels. J. Toxicol. Environ. Health A 77:959–971.
  • Frenedoso, R. S., Missassi, G. S., Santos, C. S., de Paula, E. S., Hornos Carneiro, M. F., Grotto, D., Barbosa, F., and Kempinas, W. G. 2014. Phytoremediation potential of Maná-Cubiu (Solanum sessiliflorum Dunal) for the deleterious effects of methylmercury on the reproductive system of rats. Biomed Res. Int. 2014: 309631.
  • Ganji, S. H., Qin, S., Zhang, L., Kamanna, V. S., and Kashyap, M. L. 2009. Niacin inhibits vascular oxidative stress, redox-sensitive genes, and monocyte adhesion to human aortic endothelial cells. Atherosclerosis 202: 68–75.
  • Gille, A., Bodor, E. T., Ahmed, K., and Offermanns, S. 2008. Nicotinic acid: Pharmacological effects and mechanisms of action. Annu. Rev. Pharmacol. Toxicol. 48: 79–106.
  • Ginsberg, G., Sonawane, B., Nath, R., and Lewandowski, P. 2014. Methylmercury-induced inhibition of paraoxonase-1 (PON1)—implications for cardiovascular risk. J. Toxicol. Environ. Health A 77: 1004–1023.
  • Grandjean, P. 1995. Individual susceptibility in occupational and environmental toxicology. Toxicol. Lett. 77: 105–108.
  • Grotto, D., Santa Maria, L. D., Boeira, S., Valentini, J., Charao, M. F., Moro, A. M., Nascimento, P. C., Pomblum, V. J., and Garcia, S. C. 2007. Rapid quantification of malondialdehyde in plasma by high performance liquid chromatography-visible detection. J. Pharm. Biomed. Anal. 43: 619–624.
  • Grotto, D., Barcelos, G. R., Valentini, J., Antunes, L. M., Angeli, J. P., Garcia, S. C., and Barbosa, F., Jr. 2009a. Low levels of methylmercury induce DNA damage in rats: protective effects of selenium. Arch. Toxicol. 83: 249–254.
  • Grotto, D., Barcelos, G. M., Garcia, S. C., and Barbosa, F. 2009b. Low level and sub-chronic exposure to methylmercury induces hypertension in rats: Nitric oxide depletion and oxidative damage as possible mechanisms. Arch. Toxicol. 83: 249–254.
  • Grotto, D., Valentini, J., Fillion, M., Passos, C. J., Garcia, S. C., Mergler, D., and Barbosa, F., Jr. 2010. Mercury exposure and oxidative stress in communities of the Brazilian Amazon. Sci. Total Environ. 408: 806–811.
  • Grotto, D., Vicentini, J., Angeli, J. P., Latorraca, E. F., Monteiro, P. A., Barcelos, G. R., Somacal, S., Emanuelli, T., and Barbosa, F., Jr. 2011a. Evaluation of protective effects of fish oil against oxidative damage in rats exposed to methylmercury. Ecotoxicol. Environ. Safety 74: 487–493.
  • Grotto, D., Valentini, J., Serpeloni, J. M., Monteiro, P. A., Latorraca, E. F., de Oliveira, R. S., Antunes, L. M., Garcia, S. C., and Barbosa, F., Jr. 2011b. Evaluation of toxic effects of a diet containing fish contaminated with methylmercury in rats mimicking the exposure in the Amazon riverside population. Environ. Res. 111: 1074–1082.
  • Guyton, J. R., and Bays, H. E. 2007. Safety considerations with niacin therapy. Am. J. Cardiol. 99: 22C–31C.
  • Health Canada, 2010. Canadian nutrient file. http://webprod3.hc-sc.gc.ca/cnf-fce/index-eng.jsp ( accessed September 2015).
  • Hintelmann, H. 2010. Organomercurials. Their formation and pathways in the environment. Metal Ions Life Sci. 7: 365–401.
  • Huang, P. H., Lin, C. P., Wang, C. H., Chiang, C. H., Tsai, H. Y., Chen, J. S., Lin, F. Y., Leu, H. B., Wu, T. C., Chen, J. W., and Lin, S. J. 2012. Niacin improves ischemia-induced neovascularization in diabetic mice by enhancement of endothelial progenitor cell functions independent of changes in plasma lipids. Angiogenesis 15: 377–389.
  • Jin, X., Chan, H. M., Lok, E., Kapal, K., Taylor, M., Kubow, S., and Mehta, R. 2008. Dietary fats modulate methylmercury-mediated systemic oxidative stress and oxidative DNA damage in rats. Food Chem. Toxicol. 46: 1706–1720.
  • Kirkland, J. B. 2012. Niacin requirements for genomic stability. Mutat. Res. 733: 14–20.
  • Kuban, P., Pelcova, P., Margetinova, J., and Kuban, V. 2009. Mercury speciation by CE: An update. Electrophoresis 30: 92–99.
  • Lando, A. M., Fein, S. B., and Choiniere, C. J. 2012. Awareness of methylmercury in fish and fish consumption among pregnant and postpartum women and women of childbearing age in the United States. Environ. Res. 116: 85–92.
  • Lebel, J., Mergler, D., Branches, F., Lucotte, M., Amorim, M., Larribe, F., and Dolbec, J. 1998. Neurotoxic effects of low-level methylmercury contamination in the Amazonian Basin. Environ. Res. 79: 20–32.
  • Lebiedzinska, A., Majewski, M., and Szefer, P. 2008. [Butterfish as a source of niacin]. Rocz. Panstw. Zakl. Hig. 59: 197–201.
  • Li, Y., Jiang, Y., and Yan, X.-P. 2006. Probing mercury species–DNA interactions by capillary electrophoresis with on-line electrothermal atomic absorption spectrometric detection. Anal. Chem. 78:6115–6120.
  • Malm, O. 1998. Gold mining as a source of mercury exposure in the Brazilian Amazon. Environ. Res. 77: 73–78.
  • McCord, J. M., and Fridovich, I. 1969. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244: 6049–6055.
  • McKenney, J., Bays, H., Koren, M., Ballantyne, C. M., Paolini, J. F., Mitchel, Y., Betteridge, A., Kuznetsova, O., Sapre, A., Sisk, C. M., and Maccubbin, D. 2010. Safety of extended-release niacin/laropiprant in patients with dyslipidemia. J. Clin. Lipidol. 4: 105–112e101.
  • Myers, G. J., Davidson, P. W., Cox, C., Shamlaye, C. F., Palumbo, D., Cernichiari, E., Sloane-Reeves, J., Wilding, G. E., Kost, J., Huang, L. S., and Clarkson, T. W. 2003. Prenatal methylmercury exposure from ocean fish consumption in the Seychelles Child Development Study. Lancet 361: 1686–1692.
  • Nunes, E., Cavaco, A., and Carvalho, C. 2014a. Children’s health risk and benefits of fish consumption: Risk indices based on a dietiary follow-up of two weeks. J. Toxicol. Environ. Health A 77:103–114.
  • Nunes, E., Cavaco, A., and Carvalho, C. 2014b. Exposure assessment of pregnant Portuguese women to ethylmercury through the ingestion of fish: Cross-sectional survey and biomarker validation. J. Toxicol. Environ. Health A 77:133–142.
  • Paglia, D. E., and Valentine, W. N. 1967. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 70: 158–169.
  • Pal, M., and Ghosh, M. 2012. Studies on comparative efficacy of alpha-linolenic acid and alpha-eleostearic acid on prevention of organic mercury-induced oxidative stress in kidney and liver of rat. Food Chem. Toxicol. 50: 1066–1072.
  • Palmer, C. D., Lewis, M. E., Jr., Geraghty, C. M., Barbosa, F., Jr., and Parsons, P. J. 2006. Determination of lead, cadmium and mercury in blood for assessment of environmental exposure: A comparison between inductively coupled plasma-mass spectrometry and atomic absorption spectrometry. Spectrochim. Acta B Atom. Spectrosc. 61: 980–990.
  • Park, S., and Johnson, M. A. 2006. Awareness of fish advisories and mercury exposure in women of childbearing age. Nutr. Rev. 64: 250–256.
  • Pinheiro, M. C., Macchi, B. M., Vieira, J. L., Oikawa, T., Amoras, W. W., Guimaraes, G. A., Costa, C. A., Crespo-Lopez, M. E., Herculano, A. M., Silveira, L. C., and do Nascimento, J. L. 2008. Mercury exposure and antioxidant defenses in women: A comparative study in the Amazon. Environ. Res. 107: 53–59.
  • Roulet, M., Lucotte, M., Saint-Aubin, A., Tran, S., Rhéault, I., Farella, N., De Jesus Da Silva, E., Dezencourt, J., Sousa Passos, C. J., Santos Soares, G., Guimarães, J. R. D., Mergler, D., and Amorim, M. 1998. The geochemistry of mercury in Central Amazonian soils developed on the Alter-do-Chão formation of the lower Tapajós River Valley, Pará state, Brazil. Sci. Total Environ. 223: 1–24.
  • Roulet, M., Lucotte, M., Farella, N., Serique, G., Coelho, H., Sousa Passos, C.J., De Jesus Da Silva, E., Scavone De Andrade, P., Mergler, D., Guimarães, J. R. D., and Amorim, M. 1999. Effects of recent human colonization on the presence of mercury in Amazonian ecosystems. Water Air Soil Pollut. 112: 297–313.
  • Pal, M., and Ghosh, M. 2012. Prophylactic effect of α-linolenic acid and α-eleostearic acid against MeHg induced oxidative stress, DNA damage and structural changes in RBC membrane. Food Chem. Toxicol. 50: 2811–2818.
  • Salonen, J. T., Seppanen, K., Lakka, T. A., Salonen, R., and Kaplan, G. A. 2000. Mercury accumulation and accelerated progression of carotid atherosclerosis: A population-based prospective 4-year follow-up study in men in eastern Finland. Atherosclerosis 148: 265–273.
  • Silva-Pereira, L. C., da Rocha, C. A., Cunha, L. R., da Costa, E. T., Guimaraes, A. P., Pontes, T. B., Diniz, D. L., Leal, M. F., Moreira-Nunes, C. A., and Burbano, R. R. 2014. Protective effect of prolactin against methylmercury-induced mutagenicity and cytotoxicity on human lymphocytes. Int. J. Environ. Res. Public Health 11: 9822–9834.
  • Silva-Pereira, L. C., Cardoso, P. C. S., Leite, D. S., Bahia, M. O., Bastos, W. R., Smith, M. A., and Burbano, R. R. 2005. Cytotoxicity and genotoxicity of low doses of mercury chloride and methylmercury chloride on human lymphocytes in vitro. Braz. J. Med. Biol. Res. 38:901–907.
  • Singh, N. P., McCoy, M. T., Tice, R. R., and Schneider, E. L. 1988. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 175: 184–191..
  • Spronck, J. C., and Kirkland, J. B. 2002. Niacin deficiency increases spontaneous and etoposide-induced chromosomal instability in rat bone marrow cells in vivo. Mutat. Res. 508: 83–97.
  • Surjana, D., Halliday, G. M., and Damian, D. L. 2010. Role of nicotinamide in DNA damage, mutagenesis, and DNA repair. J. Nucleic Acids pii: 157591.
  • Tupe, R. S., Tupe, S. G., and Agte, V. V. 2011. Dietary nicotinic acid supplementation improves hepatic zinc uptake and offers hepatoprotection against oxidative damage. Br. J. Nutr. 105: 1741–1749.
  • Warnholtz, A., Wild, P., Ostad, M. A., Elsner, V., Stieber, F., Schinzel, R., Walter, U., Peetz, D., Lackner, K., Blankenberg, S., and Munzel, T. 2009. Effects of oral niacin on endothelial dysfunction in patients with coronary artery disease: Results of the randomized, double-blind, placebo-controlled INEF study. Atherosclerosis 204: 216–221.
  • Wiggers, G. A., Pecanha, F. M., Briones, A. M., Perez-Giron, J. V., Miguel, M., Vassallo, D. V., Cachofeiro, V., Alonso, M. J., and Salaices, M. 2008. Low mercury concentrations cause oxidative stress and endothelial dysfunction in conductance and resistance arteries. Am. J. Physiol. Heart Circ. Physiol. 295: H1033–H1043.
  • Woods, J. S., Heyer, N. J., Russo, J. E., Martin, M. D., Pillai, P. B., Bammler, T. K., and Farin, F. M. 2014. Genetic polymorphisms of catechol-o-methyltransferase modify the neurobehavioral effects of mercury in children. J. Toxicol. Environ. Health A 77: 293–312.
  • Wormser, U., Brodsky, B., Milatovic, D., Finkelstein, Y., Farina, M., Rocha, J. B., and Aschner, M. 2012. Protective effect of a novel peptide against methylmercury-induced toxicity in rat primary astrocytes. Neurotoxicology. 33:763–768.
  • Zhang, R., Wu, F., Li, H., Guo, G., Feng, C., Giesy, J. P., and Chang, H. 2013. Toxicity reference values and tissue residue criteria for protecting avian wildlife exposed to methylmercury in China. Rev. Environ. Contam. Toxicol. 223: 53–80.
  • Zimmermann, L. T., dos Santos, D. B., Colle, D., dos Santos, A. A., Hort, M. A., Garcia, S. C., Bressan, L. P., Bohrer, D., and Farina, M. 2014. Methionine stimulates motor impairment and cerebellar mercury deposition in ethylmercury- exposed mice. J. Toxicol. Environ. Health, A 77: 46–56.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.