246
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Comparative Analysis of the Relationship Between Trichloroethylene Metabolism and Tissue-Specific Toxicity Among Inbred Mouse Strains: Kidney Effects

, , , , , , , , & show all
Pages 32-49 | Received 04 May 2014, Accepted 22 Aug 2014, Published online: 25 Nov 2014

REFERENCES

  • Abbas, R., and J. W. Fisher. 1997. A physiologically based pharmacokinetic model for trichloroethylene and its metabolites, chloral hydrate, trichloroacetate, dichloroacetate, trichloroethanol, and trichloroethanol glucuronide in B6C3F1 mice. Toxicol. Appl. Pharmacol. 147: 15–30.
  • Bradford, B. U., E. F. Lock, O. Kosyk, S. Kim, T. Uehara, D. Harbourt, M. DeSimone, D. W. Threadgill, V. Tryndyak, I. P. Pogribny, L. Bleyle, D. R. Koop, and I. Rusyn. 2011. Interstrain differences in the liver effects of trichloroethylene in a multistrain panel of inbred mice. Toxicol. Sci. 120: 206–217.
  • Brauch, H., G. Weirich, M. A. Hornauer, S. Storkel, T. Wohl, and T. Bruning. 1999. Trichloroethylene exposure and specific somatic mutations in patients with renal cell carcinoma. J. Natl. Cancer Inst. 91: 854–861.
  • Bruning, T., M. Lammert, M. Kempkes, R. Thier, K. Golka, and H. M. Bolt. 1997. Influence of polymorphisms of GSTM1 and GSTT1 for risk of renal cell cancer in workers with long-term high occupational exposure to trichloroethene. Arch. Toxicol. 71 (9):596–599.
  • Charbotel, B., S. Gad, D. Caiola, C. Beroud, J. Fevotte, A. Bergeret, S. Ferlicot, and S. Richard. 2007. Trichloroethylene exposure and somatic mutations of the VHL gene in patients with renal cell carcinoma. J. Occup. Med. Toxicol. 2: 13.
  • Chiu, W. A., J. L. Campbell, H. J. Clewell, Y. H. Zhou, F. A. Wright, K. Z. Guyton, and I. Rusyn. 2014. Physiologically-based pharmacokinetic (PBPK) modeling of inter-strain variability in trichloroethylene metabolism in the mouse. Environ. Health Perspect. 122: 456–463.
  • Chiu, W. A., J. Jinot, C. S. Scott, S. L. Makris, G. S. Cooper, R. C. Dzubow, A. S. Bale, M. V. Evans, K. Z. Guyton, N. Keshava, J. C. Lipscomb, S. Barone, J. F. Fox, M. R. Gwinn, J. Schaum, and J. C. Caldwell. 2013. Human health effects of trichloroethylene: Key findings and scientific issues. Environ. Health Perspect. 121: 303–311.
  • Chiu, W. A., M. S. Okino, J. C. Lipscomb, and M. V. Evans. 2006. Issues in the pharmacokinetics of trichloroethylene and its metabolites. Environ. Health Perspect. 114: 1450–1456.
  • Cojocel, C., W. Beuter, W. Muller, and D. Mayer. 1989. Lipid peroxidation: A possible mechanism of trichloroethylene-induced nephrotoxicity. Toxicology 55: 131–141.
  • Darnerud, P. O., I. Brandt, V. J. Feil, and J. E. Bakke. 1989. Dichlorovinyl cysteine (DCVC) in the mouse kidney: Tissue-binding and toxicity after glutathione depletion and probenecid treatment. Arch. Toxicol. 63: 345–350.
  • Desimone, M. C., W. K. Rathmell, and D. W. Threadgill. 2013. Pleiotropic effects of the trichloroethylene-associated P81S VHL mutation on metabolism, apoptosis, and ATM-mediated DNA damage response. J. Natl. Cancer Inst. 105: 1355–1364.
  • Dow, J. L., and T. Green. 2000. Trichloroethylene induced vitamin B(12) and folate deficiency leads to increased formic acid excretion in the rat. Toxicology 146: 123–136.
  • Duffield, J. S., K. M. Park, L. L. Hsiao, V. R. Kelley, D. T. Scadden, T. Ichimura, and J. V. Bonventre. 2005. Restoration of tubular epithelial cells during repair of the postischemic kidney occurs independently of bone marrow-derived stem cells. J. Clin. Invest. 115: 1743–1755.
  • Fariss, M. W., and D. J. Reed. 1987. High-performance liquid chromatography of thiols and disulfides: dinitrophenol derivatives. Methods Enzymol. 143: 101–109.
  • Goldsworthy, T. L., and J. A. Popp. 1987. Chlorinated hydrocarbon-induced peroxisomal enzyme activity in relation to species and organ carcinogenicity. Toxicol. Appl. Pharmacol. 88: 225–233.
  • Green, T., J. Dow, J. R. Foster, and P. M. Hext. 1998. Formic acid excretion in rats exposed to trichloroethylene: a possible explanation for renal toxicity in long-term studies. Toxicology 127: 39–47.
  • Green, T., J. Dow, and J. Foster. 2003. Increased formic acid excretion and the development of kidney toxicity in rats following chronic dosing with trichloroethanol, a major metabolite of trichloroethylene. Toxicology 191: 109–119.
  • Guan, Y., and M. D. Breyer. 2001. Peroxisome proliferator-activated receptors (PPARs): Novel therapeutic targets in renal disease. Kidney Int. 60: 14–30.
  • Guha, N., D. Loomis, Y. Grosse, B. Lauby-Secretan, F. El Ghissassi, V. Bouvard, L. Benbrahim-Tallaa, R. Baan, H. Mattock, K. Straif, and International Agency for Research on Cancer Monograph Working Group. 2012. Carcinogenicity of trichloroethylene, tetrachloroethylene, some other chlorinated solvents, and their metabolites. Lancet Oncol. 13: 1192–1193.
  • Harrill, A. H., K. D. Desmet, K. K. Wolf, A. S. Bridges, J. S. Eaddy, C. L. Kurtz, J. E. Hall, M. F. Paine, R. R. Tidwell, and P. B. Watkins. 2012. A mouse diversity panel approach reveals the potential for clinical kidney injury due to DB289 not predicted by classical rodent models. Toxicol. Sci. 130: 416–426.
  • Humphreys, B. D., S. Czerniak, D. P. DiRocco, W. Hasnain, R. Cheema, and J. V. Bonventre. 2011. Repair of injured proximal tubule does not involve specialized progenitors. Proc. Natl. Acad. Sci. USA 108: 9226–9231.
  • Ichimura, T., C. C. Hung, S. A. Yang, J. L. Stevens, and J. V. Bonventre. 2004. Kidney injury molecule-1: A tissue and urinary biomarker for nephrotoxicant-induced renal injury. Am. J. Physiol. Renal Physiol. 286: F552–F563.
  • Jaffe, D. R., C. D. Hassall, A. J. Gandolfi, and K. Brendel. 1985. Production of DNA single strand breaks in rabbit renal tissue after exposure to 1,2-dichlorovinylcysteine. Toxicology 35: 25–33.
  • Karami, S., Q. Lan, N. Rothman, P. A. Stewart, K. M. Lee, R. Vermeulen, and L. E. Moore. 2012. Occupational trichloroethylene exposure and kidney cancer risk: A meta-analysis. Occup. Environ. Med. 69: 858–867.
  • Kim, S., L. B. Collins, G. Boysen, J. A. Swenberg, A. Gold, L. M. Ball, B. U. Bradford, and I. Rusyn. 2009a. Liquid chromatography electrospray ionization tandem mass spectrometry analysis method for simultaneous detection of trichloroacetic acid, dichloroacetic acid, S-(1,2-dichlorovinyl)glutathione and S-(1,2-dichlorovinyl)-L-cysteine. Toxicology 262: 230–238.
  • Kim, S., D. Kim, G. M. Pollack, L. B. Collins, and I. Rusyn. 2009b. Pharmacokinetic analysis of trichloroethylene metabolism in male B6C3F1 mice: Formation and disposition of trichloroacetic acid, dichloroacetic acid, S-(1,2-dichlorovinyl)glutathione and S-(1,2-dichlorovinyl)-L-cysteine. Toxicol. Appl. Pharmacol. 238: 90–99.
  • Larson, J. L., and R. J. Bull. 1992. Species differences in the metabolism of trichloroethylene to the carcinogenic metabolites trichloroacetate and dichloroacetate. Toxicol. Appl. Pharmacol. 115: 278–285.
  • Lash, L. H., W. A. Chiu, K. Z. Guyton, and I. Rusyn. 2014. Trichloroethylene biotransformation and its role in mutagenicity, carcinogenicity and target organ toxicity. Mutat. Res., in press. DOI:10.1016/j.mrrev.2014.04.003
  • Lash, L. H., J. W. Fisher, J. C. Lipscomb, and J. C. Parker. 2000. Metabolism of trichloroethylene. Environ. Health Perspect. 108(suppl. 2):177–200.
  • Lash, L. H., D. A. Putt, W. T. Brashear, R. Abbas, J. C. Parker, and J. W. Fisher. 1999. Identification of S-(1,2-dichlorovinyl)glutathione in the blood of human volunteers exposed to trichloroethylene. J. Toxicol. Environ. Health A 56: 1–21.
  • Lash, L. H., D. A. Putt, and J. C. Parker. 2006. Metabolism and tissue distribution of orally administered trichloroethylene in male and female rats: Identification of glutathione- and cytochrome P-450-derived metabolites in liver, kidney, blood, and urine. J. Toxicol. Environ. Health A 69: 1285–1309.
  • Lash, L. H., W. Qian, D. A. Putt, K. Jacobs, A. A. Elfarra, R. J. Krause, and J. C. Parker. 1998. Glutathione conjugation of trichloroethylene in rats and mice: Sex-, species-, and tissue-dependent differences. Drug Metab. Dispos. 26: 12–19.
  • Lin, F., A. Moran, and P. Igarashi. 2005. Intrarenal cells, not bone marrow-derived cells, are the major source for regeneration in postischemic kidney. J. Clin. Invest. 115: 1756–1764.
  • Mally, A., C. L. Walker, J. I. Everitt, W. Dekant, and S. Vamvakas. 2006. Analysis of renal cell transformation following exposure to trichloroethene in vivo and its metabolite S-(dichlorovinyl)-L-cysteine in vitro. Toxicology 224: 108–118.
  • Merdink, J. L., A. Gonzalez-Leon, R. J. Bull, and I. R. Schultz. 1998. The extent of dichloroacetate formation from trichloroethylene, chloral hydrate, trichloroacetate, and trichloroethanol in B6C3F1 mice. Toxicol. Sci. 45: 33–41.
  • Merdink, J. L., L. M. Robison, D. K. Stevens, M. Hu, J. C. Parker, and R. J. Bull. 2008. Kinetics of chloral hydrate and its metabolites in male human volunteers. Toxicology 245: 130–140.
  • Moore, L. E., M. L. Nickerson, P. Brennan, J. R. Toro, E. Jaeger, J. Rinsky, S. S. Han, D. Zaridze, V. Matveev, V. Janout, H. Kollarova, V. Bencko, M. Navratilova, N. Szeszenia-Dabrowska, D. Mates, L. S. Schmidt, P. Lenz, S. Karami, W. M. Linehan, M. Merino, S. Chanock, P. Boffetta, W. H. Chow, F. M. Waldman, and N. Rothman. 2011. Von Hippel–Lindau (VHL) inactivation in sporadic clear cell renal cancer: Associations with germline VHL polymorphisms and etiologic risk factors. PLoS Genet 7: e1002312.
  • Moore, M. M., and K. Harrington-Brock. 2000. Mutagenicity of trichloroethylene and its metabolites: Implications for the risk assessment of trichloroethylene. Environ. Health Perspect. 108(suppl. 2): 215–223.
  • National Cancer Institute. 1976. Carcinogenesis bioassay of trichloroethylene. Natl Cancer Inst. Carcinogen Tech. Rep. Ser. 2: 1–215.
  • National Research Council. 2006. Assessing the human health risks of trichloroethylene: Key scientific issues Washington, DC: National Academies Press.
  • National Toxicology Program. 1988. Toxicology and carcinogenesis studies of trichloroethylene (CAS no. 79-01-6) in four strains of rats (ACI, August, Marshall, Osborne-Mendel) (gavage studies). Natl. Toxicol. Program Tech. Rep. Ser. 273: 1–299.
  • National Toxicology Program. 1990. Carcinogenesis studies of trichloroethylene (without epichlorohydrin) (CAS no. 79-01-6) in F344/N rats and B6C3F1 mice (gavage studies). Natl. Toxicol. Program Tech. Rep. Ser. 243: 1–174.
  • Ohno, S., Y. Fujii, N. Usuda, F. Murata, and T. Nagata. 1982. Peroxisomal proliferation in rat kidney induced with DEHP. I. Numerical change by light microscopic morphometry. Acta Histochem. Cytochem. 15: 40–57.
  • Ozer, J. S., F. Dieterle, S. Troth, E. Perentes, A. Cordier, P. Verdes, F. Staedtler, A. Mahl, O. Grenet, D. R. Roth, D. Wahl, F. Legay, D. Holder, Z. Erdos, K. Vlasakova, H. Jin, Y. Yu, N. Muniappa, T. Forest, H. K. Clouse, S. Reynolds, W. J. Bailey, D. T. Thudium, M. J. Topper, T. R. Skopek, J. F. Sina, W. E. Glaab, J. Vonderscher, G. Maurer, S. D. Chibout, F. D. Sistare, and D. L. Gerhold. 2010. A panel of urinary biomarkers to monitor reversibility of renal injury and a serum marker with improved potential to assess renal function. Nat. Biotechnol. 28: 486–494.
  • Peters, J. M., Y. M. Shah, and F. J. Gonzalez. 2012. The role of peroxisome proliferator-activated receptors in carcinogenesis and chemoprevention. Nat. Rev. Cancer 12: 181–195.
  • Portilla, D., G. Dai, J. M. Peters, F. J. Gonzalez, M. D. Crew, and A. D. Proia. 2000. Etomoxir-induced PPARalpha-modulated enzymes protect during acute renal failure. Am. J. Physiol. Renal Physiol. 278: F667–F675.
  • Rusyn, I., D. M. Gatti, T. Wiltshire, S. R. Kleeberger, and D. W. Threadgill. 2010. Toxicogenetics: Population-based testing of drug and chemical safety in mouse models. Pharmacogenomics 11: 1127–1136.
  • Rusyn, I., W. A. Chiu, L. H. Lash, H. Kromhout, J. Hansen, and K. Z. Guyton. 2014. Trichloroethylene: Mechanistic, epidemiologic and other supporting evidence of carcinogenic hazard. Pharmacol Ther 141: 55–68.
  • Scott, C. S., and J. Jinot. 2011. Trichloroethylene and cancer: Systematic and quantitative review of epidemiologic evidence for identifying hazards. Int. J. Environ. Res. Public Health 8: 4238–4272.
  • Shirai, N., M. Ohtsuji, K. Hagiwara, H. Tomisawa, N. Ohtsuji, S. Hirose, and H. Hagiwara. 2012. Nephrotoxic effect of subchronic exposure to S-(1,2-dichlorovinyl)-L-cysteine in mice. J Toxicol. Sci. 37: 871–878.
  • Song, J. Z., and J. W. Ho. 2003. Simultaneous detection of trichloroethylene alcohol and acetate in rat urine by gas chromatography-mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 789: 303–309.
  • Storey, J. D., and R. Tibshirani. 2003. Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. USA 100: 9440–9445.
  • U.S. Environmental Protection Agency. 2011. Toxicological review of trichloroethylene (CAS no. 79-01-6): In support of summary information on the Integrated Risk Information System (IRIS). Washington, DC: National Center for Environmental Assessment.
  • Yoo, H. S., B. U. Bradford, O. Kosyk, S. Shymonyak, T. Uehara, L. B. Collins, W. B. Bodnar, L. M. Ball, A. Gold, and I. Rusyn. 2014. Comparative analyses of the relationship between trichloroethylene metabolism and tissue-specific toxicity among inbread mouse strains: Liver effects. J. Toxicol. Environ. Health A 78(1): XX–XX.
  • Zaar, K. 1992. Structure and function of peroxisomes in the mammalian kidney. Eur. J. Cell Biol. 59: 233–254.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.