594
Views
44
CrossRef citations to date
0
Altmetric
Original Articles

Bisphenol A Exposure During Early Development Induces Sex-Specific Changes in Adult Zebrafish Social Interactions

, , &
Pages 50-66 | Received 06 May 2014, Accepted 16 Jun 2014, Published online: 25 Nov 2014

REFERENCES

  • Angle, B. M., Do, R. P., Ponzi, D., Stahlhut, R. W., Drury, B. E., Nagel, S. C., Welshons, W. V., Besch-Williford, C. L., Palanza, P., Parmigiani, S., vom Saal, F. S., and Taylor, J. A. 2013. Metabolic disruption in male mice due to fetal exposure to low but not high doses of bisphenol A (BPA): Evidence for effects on body weight, food intake, adipocytes, leptin, adiponectin, insulin and glucose regulation. Reprod. Toxicol. 42: 256–268.
  • Airhart, M. J., Lee, D. H., Wilson, T. D., Miller, B. E., Miller, M. N., and Skalko, R. G. 2007. Movement disorders and neurochemical changes in zebrafish larvae after bath exposure to fluoxetine (PROZAC). Neurotoxicol. Teratol. 29: 652–664.
  • Aris, A. 2013. Estimation of bisphenol A (BPA) concentrations in pregnant women, fetuses and nonpregnant women in Eastern Townships of Canada. Reprod. Toxicol. 28: 8–13.
  • Aston-Jones, G., Iba, M., Clayton, E., Rajkowski, J., and Cohen, J. 2007. The locus coeruleus and regulation of behavioral flexibility and attention: clinical implications. In Brain norepinephrine: Neurobiology and therapeutics, ed. G. A. Ordway, M. A. Schwartz, and A. Frazer. New York, NY: Cambridge University Press.
  • Bailey, J., Oliveri, A., and Levin, E. D. 2013. Zebrafish model systems for developmental neurobehavioral toxicology. Birth Defects Res. C Embryo Today 99: 14–23.
  • Ben-Jonathan, N., and Steinmetz, R. 1998. Xenoestrogens: The emerging story of bisphenol A. Trends Endocrinol. Metab. 9: 124–128.
  • Biedermann, S., Tschudin, P., and Grob, K. 2010. Transfer of bisphenol A from thermal printer paper to the skin. Anal. Bioanal. Chem. 398: 571–576.
  • Brannick, K. E., Craig, Z. R., Himes, A. D., Peretz, J. R., Wang, W., Flaws, J. A., Raetzman, L. T. 2012. Prenatal exposure to low doses of bisphenol A increases pituitary proliferation and gonadotroph number in female mice offspring at birth. Biol. Reprod. 87: 82.
  • Braun, J. M., Kalkbrenner, A. E., Calafat, A. M., Yolton, K., Ye, X., Dietrich, K. N., and Lanphear, B. P. 2011. Impact of early-life bisphenol A exposure on behavior and executive function in children. Pediatrics 128: 873–882.
  • Braun, J. M., Yolton, K., Dietrich, K. N., Hornung, R., Ye, X., Calafat, A. M., and Lanphear, B. P. 2009. Prenatal bisphenol A exposure and early childhood behavior. Environ. Health Perspect. 117: 1945–1952.
  • Cagan, S. Z., Waechter, J. M., Jr., Dimond, S. S., Breslin, W. J., Butala, J. H., Jekat, F. W., Joiner, R. L., Shiotsuka, R. N., Veenstra, G. E., and Harris, L. R. 1999. Normal reproductive organ development in CF-1 mice following prenatal exposure to bisphenol A. Toxicol. Sci. 50: 36–44.
  • Calafat, A. M., Ye, X., Wong, L. Y., Reidy, J. A., and Needham, L. L. 2008. Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003–2004. Environ. Health Perspect. 116:39–44.
  • Cao, J., Rebuli, M. E., Todd, K. L., Leyrer, S. M., Ferguson, S. A., and Patisaul, H. B. 2013. Prenatal bisphenol A exposure alters sex-specific estrogen receptor expression in the neonatal rat hypothalamus and amygdala. Toxicol. Sci., 133:157–173.
  • Cao, N., Wei, H., Wu, L.-G., Wu, T.-T., and Li, G.-P. 2010. Effects of bisphenol A on zebrafish (Danio rerio) liver and gonad. Shengtaixue Zazhi 29: 2129–2198.
  • Cao, X.-L., Perez-Locas, C., Dufresne, G., Clement, G., Popovic, S., Beraldin, F., Dabeka, R. W., and Feeley, M. 2011. Concentrations of bisphenol A in the composite food samples from the 2008 Canadian total diet study in Quebec City and dietary intake estimates. Food Addit. Contam. Part A Chem. Anal. Control Exposure Risk Assess. 28: 791–798.
  • Ceinos, R. M., Rábade, S., Soengas, J. L., and Míguez, J. M. 2005. Indoleamines and 5-methoxyindoles in trout pineal organ in vivo: Daily changes and influence of photoperiod. Gen. Comp. Endocrinol. 144: 67–77.
  • Chung, E., Genco, M. C., Megrelis, L., and Ruderman, J. V. 2011. Effects of bisphenol A and triclocarban on brain-specific expression of aromatase in early zebrafish embryos. Proc. Natl. Acad. Sci. USA 108: 17732–17737.
  • Clotfelter, E. D., O’Hare, E. P., McNitt, M. M., Carpenter, R. E., and Summers, C. H. 2007. Serotonin decreases aggression via 5-HT1A receptors in the fighting fish Betta splendens. Pharmacol. Biochem. Behav. 87: 222–231.
  • Dahlbom, S. J., Backström, T., Lundstedt-Enkel, K., and Winberg, S. 2012. Aggression and monoamines: Effects of sex and social rank in zebrafish (Danio rerio). Behav. Brain Res. 228: 333–338.
  • Dixon, D. O., and Duncan, D. B. 1975. Minimum-Bayes-risk t-intervals for multiple comparisons. J. Am. Stat. Assoc. 70: 822–831.
  • Donner, N., and Handa, R. J. 2009. Estrogen receptor beta regulates the expression of tryptophan-hydroxylase 2 mRNA within serotonergic neurons of the rat dorsal raphe nuclei. Neuroscience 163: 705–718.
  • Donohue, K. M., Miller, R. L., Perzanowski, M. S., Just, A. C., Hoepner, L. A., Arunajadai, S., Canfield, S., Resnick, D., Calafat, A. M., Perera, F. P., and Whyatt, R. M. 2013. Prenatal and postnatal bisphenol A exposure and asthma development among inner-city children. J. Allergy Clin. Immunol. 131: 736–742.
  • Elipot, Y., Hinaux, H., Callebert, J., and Rétaux, S. 2013. Evolutionary shift from fighting to foraging in blind cavefish through changes in the serotonin network. Curr. Biol. 23: 1–10.
  • Favreau, A., Richard-Yris, M.-A., Bertin, A., Houdelier, C., and Lumineau, S. 2009. Social influences on circadian behavioural rhythms in vertebrates. Anim. Behav. 77: 983–989.
  • Fent, K. 2000. Hormonaktive stoffe in gewaessern: Auch eine gefahr fuers trinkwasser? [Hormone active compounds in aquatic systems: A hazard for drinking water?] Mitteilungen Lebensmitteluntersuchung Hyg. 91: 11–25.
  • Fink, G., Sumner, B. E., Rosie, R., Grace, O., and Quinn, J. P. 1996. Estrogen control of central neurotransmission: Effect on mood, mental state, and memory. Cell. Mol. Neurobiol. 16: 325–344.
  • Foran, C. M., Weston, J., Slattery, M., Brooks, B. W., and Huggett, D. B. 2004. Reproductive assessment of Japanese medaka (Oryzias latipes) following a four-week fluoxetine (SSRI) exposure. Arch. Environ. Contam. Toxicol. 46: 511–517.
  • Galea, L. A., and Barha, C. K. 2011. Maternal bisphenol A (BPA) decreases attractiveness of male offspring. Proc. Natl. Acad. Sci. USA 108: 11305–11306.
  • Gibert, Y., Sassi-Messai, S., Fini, J.-B., Bernard, L., Zalko, D., Cravedi, J.-P., Balaguer, P., Andersson-Lendahl, M., Demeneix, B., and Laudet, V. 2011. Bisphenol A induces otolith malformations during vertebrate embryogenesis. BMC Dev. Biol. 11: 4.
  • González, E. M. C., Penedo, L. A., Oliveira-Silva, P., Campello-Costa, P., Araújo-Guedes, R. C., and Serfaty, C. A. 2008. Neonatal tryptophan dietary restriction alters development of retinotectal projections in rats. Exp. Neurol. 211: 441–448.
  • Harley, K. G., Gunier, R. B., Kogut, K., Johnson, C., Bradman, A., Calafat, A. Z. M., and Eskenazi, B. 2013. Prenatal and early childhood bisphenol A concentrations and behavior in school-aged children. Environ. Res. 126: 43–50.
  • Hatef, A., Zare, A., Alavi, S. M. H., Habibi, H. R., and Linhart, O. 2012. Modulations in androgen and estrogen mediating genes and testicular response in male goldfish exposed to bisphenol A. Environ. Toxicol. Chem. 31: 2069–2077.
  • Ho, A. K., Burns, T. G., Grota, L. J., and Brown, G. M. 1985. Scheduled feeding and 24-hour rhythms of N-acetylserotonin and melatonin in rats. Endocrinology 116: 1858–1862.
  • Holtby, L. B., Swain, D. P., and Allan, G. M. 1993. Mirror-elicited agonistic behaviour and body morphology as predictors of dominance status in juvenile coho salmon (Oncorhynchus kisutch). Can. J. Fish. Aquat. Sci. 50: 676–684.
  • Honma, T., Miyagawa, M., Suda, M., Wang, R. S., Kobayashi, K., and Sekiguchi, S. 2006. Effects of perinatal exposure to bisphenol A on brain neurotransmitters in female rat offspring. Ind. Health 44: 510–524.
  • Huang, Q., Fang, C., Chen, Y., Wu, X., Ye, T., Lin, Y., and Dong, S. 2012. Embryonic exposure to low concentration of bisphenol A affects the development of Oryzias melastigma larvae. Environ. Sci. Pollut. Res. Int. 19: 2506–2514.
  • Jašarević, E., Williams, S. A., Vandas, G. M., Ellersieck, M. R., Liao, C., Kannan, K., Roberts, R. M., Geary, D. C., and Rosenfeld, C. S. 2013. Sex and dose-dependent effects of developmental exposure to bisphenol A on anxiety and spatial learning in deer mice (Peromyscus maniculatus bairdii) offspring. Horm. Behav. 63: 180–189.
  • Jiao, B., and Cheng, C. H. 2010. Disrupting actions of bisphenol A and malachite green on growth hormone receptor gene expression and signal transduction in seabream. Fish Physiol. Biochem. 36: 251–261.
  • Jones, B. A., Shimell, J. J., and Watson, N. V. 2011. Pre- and postnatal bisphenol A treatment results in persistent deficits in the sexual behavior of male rats, but not female rats, in adulthood. Horm. Behav. 59: 246–251.
  • Kasper-Sonnenberg, M., Wittsiepe, J., Koch, H. M., Fromme, H., and Wilhelm, M. 2012. Determination of bisphenol A in urine from mother–child pairs—Results from the Duisburg birth cohort study, Germany. J. Toxicol. Environ. Health A 75: 429–437.
  • Kavaliers M. 1980. Social groupings and circadian activity of the killifish, Fundulus heteroclitus. Biol. Bull. 158: 69–76
  • King, J. A. 1973. The ecology of aggressive behavior. Annu. Rev. Ecol. System. 4: 117–138.
  • Kobayashi, K., Kubota, H., Ohtani, K., Hojo, R., and Miyagawa, M. 2012. Lack of effects for dietary exposure of bisphenol A during in utero and lactational periods on reproductive development in rat offspring. J. Toxicol. Sci. 37: 565–573.
  • Kazuhiko, K., Okio, A., Rika, O., Minoru, O., Tetsuro, H., and Shuji, A. 2001. Exposure to bisphenol A during the fetal and suckling periods disrupts sexual differentiation of the locus coeruleus and of behavior in the rat. Neurosci. Lett. 304: 73–76.
  • Kubo, K., Arai, O., Ogata, R., Omura, M., Hori, T., Aou, S. 2001. Exposure to bisphenol A during the fetal and suckling periods disrupts sexual differentiation of the locus coeruleus and of behavior in the rat. Neurosci Lett. 304:73–76.
  • Kundakovic, M., Gudsnuk, K., Franks, B., Madrid, J., Miller, R. L., Perera, F. P., and Champagne, F. A. 2013. Sex-specific epigenetic disruption and behavioral changes following low-dose in utero bisphenol A exposure. Proc. Natl. Acad. Sci. USA 110: 9956–9961.
  • Lee, B. E., Park, H., Hong, Y. C., Ha, M., Kim, Y., Chang, N., Kim, B. N., Kim, Y. J., Yu, S. D., and Ha, E. H. 2014. Prenatal bisphenol A and birth outcomes: MOCEH (Mothers and Children’s Environmental Health) study. Int. J. Hyg. Environ. Health 217: 328–334.
  • Lemos, M. F., Esteves, A. C., Samyn, B., Timperman, I., van Beeumen, J., Correia, A., van Gestel, C. A., and Soares, A. M. 2010. Protein differential expression induced by endocrine disrupting compounds in a terrestrial isopod. Chemosphere 79: 570–576.
  • León-Olea, M., Martyniuk, C. J., Orlando, E. F., Ottinger, M. A., Rosenfeld, C. S., Wolstenholme, J. T., and Trudeau, V. L. 2014. Current concepts in neuroendocrine disruption. Gen. Comp. Endocrinol. 203:158–173. [epub ahead of print].
  • Li, Y., Zhang, W., Liu, J., Wang, W., Li, H., Zhu, J., Weng, S., Xiao, S., and Wu, T. 2014. Prepubertal bisphenol A exposure interferes with ovarian follicle development and its relevant gene expression. Reprod. Toxicol. 44: 33–40.
  • Liao, C., and Kannan, K. 2013. Concentration and profiles of bisphenol A and other bisphenol analogues in foodstuffs from the United States and their implications for human exposure. J. Agric. Food Chem. 61: 4655–4662.
  • Ma, P. M. 1994. Catecholaminergic systems in the zebrafish. I. Number, morphology, and histochemical characteristics of neurons in the locus coeruleus. J. Comp. Neurol. 344: 242–255.
  • Masuo, Y., and Ishido, M. 2011. Neurotoxocity of endocrine disruptors: Possible involvement in brain development. J. Toxicol. Environ. Health B 14: 346–369.
  • Matsuda, S., Saika, S., Amano, K., Shimizu, E., and Sajiki, J. 2010. Changes in brain monoamine levels in neonatal rats exposed to bisphenol A at low doses. Chemosphere 78: 894–906.
  • McCarthy, M. M. 2008. Estradiol and the developing brain. Physiol. Rev., 88: 91–124.
  • McEwen, B. 2002. Estrogen actions throughout the brain. Rec. Prog. Hormone Res, 57: 357–384.
  • Milhaich, E., Rhodes, J., van der Hoeven, N., Detrich, D., Hall, A. T., Caspers, N., Ortego, L., Staples, C., Dimond, S., and Hentges, S. 2012. Adult fathead minnow, Pimphales promelas, partial life-cycle reproductive and gonadal histopathology study with bisphenol A. Environ. Toxicol. Chem. 31: 2525–2535.
  • Miodovnik, A., Engel, S. M., Zhu, C., Ye, X., Soorya, L. V., Silva, M. J., Calafat, A. M., and Wolff, M. S. 2011. Endocrine disruptors and childhood social impairment. Neurotoxicology 32: 261–267.
  • Milwaukee Water Works. 2013. http://milwaukee.gov/ImageLibrary/Groups/WaterWorks/files/2013TreatedWaterListofUndetect.pdf
  • Molina, A. M., Lora, A. J., Blanco, A., Monterde, J. G., Ayala, N., and Moyano, R. 2013. Endocrine-active compound evaluation: Qualitative and quantitative histomorphological assessment of zebrafish gonads after bisphenol-A exposure. Ecotoxicol. Environ. Safety 88: 155–162.
  • Nakagami, A. Neigishi, T., Kawasaki, K., Imai, N., Nishida, Y., Ihara, T., Kuroda, Y., Yoshikawa, Y., and Koyama, T. 2009. Alterations in male infant behaviors towards its mother by prenatal exposure to bisphenol A in cynomolgus monkeys (Macaca fasicularis) during early suckling period. Psychoneuroendocrinology 34: 1189–1197.
  • Nanjappa, M. K., Simon, L., and Akingbemi, B. T. 2012. The industrial chemical bisphenol A (BPA) interferes with proliferative activity and development of steroidogenic capacity in rat Leydig cells. Biol. Reprod., 86: 1–12.
  • Noonan, G. O., Ackerman, L. K., and Begley, T. H. 2011. Concentration of bisphenol A in highly consumed canned foods on the U.S. market. J. Agric. Food Chem. 59: 7178–7185.
  • Okada, H., Tokunaga, T., Liu, X., Takayanagi, S., Matsushima, A., and Shimohigashi, Y. 2008. Direct evidence revealing structural elements essential for the high binding ability of bisphenol A to human estrogen-related receptor-gamma. Environ. Health Perspect. 116:32–38.
  • Oliveira, R. F. 2013. Mind the fish: zebrafish as a model in cognitive social neuroscience. Front. Neural Circuits 7: 131.
  • Orozco-Suárez, S., Del Ángel, A. R., Beas-Zárate, C., Manjarrez, G., and Feria-Velasco, A. 2003. Corn feeding during development induces changes in the number of serotonergic neurons in the raphe nuclei. Int. J. Dev. Neurosci. 21: 13–22.
  • Palanza, P., Gioiosa, L., vom Saal, F. S., and Parmigiani, S. 2008. Effects of developmental exposure of bisphenol A on brain and behavior in mice. Environ. Res. 108: 150–157.
  • Palanza, P., Howdeshell, K. L., Parmigiani, S., and vom Saal, F. S. 2002. Exposure to a low dose of bisphenol A during fetal life or in adulthood alters maternal behavior in mice. Environ. Health Perspect. 3(suppl. 110): 415–422.
  • Panksepp, J. B., Wong, J. C., Kennedy, B. C., and Lahvis, G. P. 2008. Differential entrainment of a social rhythm in adolescent mice. Behav. Brain. Res. 195: 239–245.
  • Perera, F., Vishnevetsky, J., Herbstman, J. B., Calafat, A. M., Xiong, W., Rauh, V., and Wng, S. 2012. Prenatal bisphenol A exposure and child behavior in an inner-city cohort. Environ. Health Perspect. 120: 1190–1194.
  • Persico, A. M., Altamura, C., Calia, E., Puglisi-Allegra, S., Ventura, R., Lucchese, F., and Keller, F. 2000. Serotonin depletion and barrel cortex development: Impact of growth impairment vs. serotonin effects on thalamocortical endings. Cereb. Cortex 10: 181–191.
  • Prasanth, G. K., Divya, L. M., and Sadasivan C. 2010. Bisphenol-A can bind to human glucocorticoid receptor as an agonist: An in silico study. J. Appl. Toxicol. 30: 769–774.
  • Ramos, J. G. Varayoud, J., Kass, L., Rodriguez, H., Costabel, L., Muñoz-de-Toro, M., and Luque, E. H. 2003. Bisphenol A induces both transient and permanent histofunctional alterations of the hypothalamic-pituitary-gonadal axis in prenatally exposed male rats. Endocrinology 144: 3206–3215.
  • Ribeiro, C., Urbatzka, R., Castro, L. F. C., Carrola, J., Fontainhas-Fernandes, A., Monteiro, R. A. F., Rocha, E., Rocha, M. J. 2012. In vitro exposure of Nile tilapia (Oreochromis niloticus) testis to estrogenic endocrine disrupting chemicals: mRNA expression of genes encoding steroidogenic enzymes. Toxicol. Mech. Methods 22: 47–53.
  • Robledo, C., Peck, J. D., Stoner, J. A., Carabin, H., Cowan, L., Koch, H. M., and Goodman, J. R. 2013. Is bisphenol-A exposure during pregnancy associated with blood glucose levels or diagnosis of gestational diabetes? J. Toxicol. Environ. Health A 76: 865–873.
  • Rood, B. D., and Beck, S. G. 2013. Vasopressin indirectly excites dorsal raphe serotonin neurons through activation of the vasopressin1A receptor. Neuroscience. 260: 206–216.
  • Ryan, B. C., Hotchkiss, A. K., Crofton, K. M., and Gray, L. E., Jr. 2010. In utero and lactational exposure to bisphenol A, in contrast to ethinyl estradiol, does not alter sexually dimorphic behavior, puberty, fertility, and anatomy of female LE rats. Toxicol. Sci. 114: 133–148.
  • Saili, K. S., Corvi, M. M., Weber, D. N., Patel, A. U., Das, S. R., Przybyla, J., Anderson, K. A., and Tanguay, R. L. 2012. Neurodevelopmental low-dose bisphenol A exposure leads to early life-stage hyperactivity and learning deficits in adult zebrafish. Toxicology 291: 83–92.
  • Spence, R., Gerlach, G., Lawrence, C., and Smith, C. 2008. The behaviour and ecology of the zebrafish, Danio rerio. Biol. Rev. Cambridge Philos. Soc. 83: 13–34.
  • Tainaka, H., Takahashi, H., Umezawa, M., Tanaka, H., Nishimune, Y., Oshio, S., and Takeda, K. 2012. Evaluation of the testicular toxicity of prenatal exposure to bisphenol A based on microarray analysis combined with MeSH annotation. J. Toxicol. Sci, 37: 539–548.
  • Takayanagi, S., Tokunaga, T., Liu, X., Okada, H., Matsushima, A., and Shimohigashi, Y. 2006. Endocrine disruptor bisphenol A strongly bonds to human estrogen-related receptor γ (ERRγ) with high constitutive activity. Toxicology 167: 95–105.
  • Tanaka, M., Nakaya, S., Katayama, M., Leffers, H., Nozawa, S., Nakazawa, R., Iwamoto, T., and Kobayashi, S. 2006. Effect of prenatal exposure to bisphenol A on the serum testosterone concentration of rats at birth. Hum. Exp. Toxicol. 25: 369–373.
  • Theobald, A., Simoneau, C., Hannaert, P., Roncari, A., Rudolph, T., and Anklam, E. 2000. Occurrence of bisphenol-F-diglycidyl ether (BFDGE) in fish canned in oil. Food Addit. Contam. 17: 881–887.
  • Thomson, B. M., and Grounds, P. R. 2005. Bisphenol A in canned foods in New Zealand: An exposure assessment. Food Addit. Contam. 22: 65–72.
  • Veifa-Lopez, A., Luuense, L. J., Christenson, L. K., and Padmanabhan, V. 2013. Developmental programming: Gestational bisphenol-A treatment alters trajectory of fetal ovarian gene expression. Endocrinology 154: 1873–1884.
  • vom Saal, F. S., Akingbemi, B. T., Belcher, S. M., Birnbaum, L. S., Crain, D. A., Eriksen, M., Farabollini, F., Guillette, L. J., Jr., Hauser, R., Heindel, J. J., Ho, S.-M., Hunt, P. A., Iguchi, T., Jobling, S., Kanno, J., Keri, R. A., Knudsen, K. E., Laufer, H., LeBlanc, G. A., Marcus, M., McLachlan, J. A., Myers, J. P., Nadal, A., Newbold, R. R., Olea, N., Prins, G. S., Richter, C. A., Rubin, B. S., Sonnenschein, C., Soto, A. M., Talsness, C. E., Vandenbergh, J. G., Vandenberg, L. N., Walser-Kuntz, D. R., Watson, C. S., Welshons, W. V., Wetherill, Y., and Zoeller, R.T. 2007. Chapel Hill Bisphenol A Expert Panel consensus statement: Integration of mechanisms, effects in animals and potential to impact human health at current levels of exposure. Reprod. Toxicol. 24: 131–138
  • Washington, W., Hubert, L., Jones, D., and Gray, W. G. 2001. Bisphenol A binds to the low-affinity estrogen binding site. In Vitro Mol. Toxicol. 14: 43–51.
  • Wayne, A., and Trudeau, V. L. 2011. Neuroendocrine disruption: More than hormones are upset. J. Toxicol. Environ. Health B. 14: 270–291.
  • Weber, D. N., and Ghorai, J. K. 2013. Experimental design affects social behavior outcomes in adult zebrafish developmentally exposed to lead. Zebrafish 10: 294–302.
  • Weber, D. N., and Spieler, R. E. 1994. Behavioral mechanisms of metal toxicity in fishes. In Aquatic toxicology: Molecular, biochemical, and cellular perspectives, ed. C. D. Malins and G. K. Ostrander, 421–467. Boca Raton, FL: Lewis.
  • Weber, D. N., and Spieler, R. E. 1987. Effects of the light-dark cycle and scheduled feeding on behavioral endpoints and reproductive rhythms of the cyrinodont fish medaka, Oryzias latipes. Experientia 43: 621–624.
  • Wei, X., Huang, Y., Wong, M. H., Giesy, J. P., and Wong, C. K. C. 2011. Assessment of risk to humans of bisphenol A in marine and freshwater fish from Pearl River Delta, China. Chemosphere 85: 122–128.
  • Weinberger, J. 2nd, and Klaper, R. 2014. Environmental concentrations of the selective serotonin reuptake inhibitor fluoxetine impact specific behaviors involved in reproduction, feeding and predator avoidance in the fish Pimephales promelas (fathead minnow). Aquat. Toxicol. 151: 77–83.
  • Welshons, W. V., Nagel, S. C., and vom Saal, F. S. 2006. Large effects from small exposures. III. Endocrine mechanisms mediating effects of bisphenol A at levels of human exposure. Endocrinology 147: S56–S69.
  • Westerfield, M. 2000. The zebrafish book. Eugene, OR: University of Oregon Press.
  • Williams, S. A., Jašarević, E., Vandas, G. M., Warzak, D. A., Geary, D. C., Ellersieck, M. R., Roberts, R. M., and Rosenfeld, C. S. 2013. Effects of developmental bisphenol A exposure on reproductive-related behaviors in California mice (Peromyscus californicus): A monogamous animal model. PLoS One 8: e55698.
  • Willhite, C. C., Ball, G. L., and McLellan, C. J. 2008. Derivation of a bisphenol A oral reference dose (RfD) and drinking-water equivalent concentration. J. Toxicol. Environ. Health B 11: 69–146.
  • Wolstenholme, J. T., Taylor, J. A., Shetty, S. R., Edwards, M., Connelly, J. J., and Rissman, E. F. 2011. Gestational exposure to low dose bisphenol A alters social behavior in juvenile mice. PLoS One 6: e25448.
  • Xi, W., Lee, C. K., Yeung, W. S., Giesey, J. P., Wong, M., Zhang, X., Hecker, M., and Wong, C. K. 2011a. Effect of perinatal and postnatal bisphenol A exposure to the regulatory circuits at the hypothalamus-pituitary-gonadal axis of CD-1 mice. Reprod. Toxicol. 31: 409–417.
  • Xi, W., Wan, H. T., Zhao, Y. G., Wong, M., Giesey, J. P., and Wong, C. K. 2011b. Effects of perinatal exposure to bisphenol A and di(2-ethylhexyl)-phthalate on gonadal development of male mice. Environ. Sci. Pollut. Res. Int. 19: 2515–2527.
  • Xu, X., Hong, X., Xie, L., Li, T., Yang, Y., Zhang, Q., Zhang, G., and Liu, X. 2012. Gestational and lactational exposure to bisphenol-A affects anxiety- and depression-like behaviors in mice. Hormone Behav. 62: 480–490.
  • Xu, X., Liu, Y., Sadamatsu, M., Tsutsumi, S., Akaike, M., Ushijima, H., and Kato, N. 2007. Perinatal bisphenol A affects the behavior and SRC-1 expression of male pups but does not influence on the thyroid hormone receptors and its responsive gene. Neurosci. Res. 58: 149–155.
  • Yan, W., Wilson, C. C., and Haring, J. H. 1997. Effects of neonatal serotonin on the development of rat granule cells. Dev. Brain Res. 98: 177–184.
  • Zimmers, S. M., Browne, E. P., O’Keefe, P. W., Anderton, D. L., Kramer, L., Reckhow, D. A., and Arcaro, K. F. 2014. Determination of free bisphenol A (BPA) concentrations in breast milk of U.S. women using a sensitive LC/MS/MS method. Chemosphere 104: 237–243.
  • Zuercher, W. J., Gaillard, S., Orband-Miller, L. A., Chao, E. Y., Shearer, B. G., Jones, G., Miller, A. B., Collins, J. L., McDonnell, D. P., and Willson, T. M. 2005. Identification and structure–activity relationship of phenolic acyl hydrazones as selective agonists for the estrogen-related orphan nuclear receptors ERRbeta and ERRgamma. J. Med. Chem. 48: 3107–3109.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.