454
Views
23
CrossRef citations to date
0
Altmetric
Articles

Gold nanorods induce early embryonic developmental delay and lethality in zebrafish (Danio rerio)

, , ORCID Icon, , , , , , , & show all

References

  • Alaraby, M., Annangi, B., Marcos, R., and Hernández, A. 2016. Drosophila melanogaster as a suitable in vivo model to determine potential side effects of nanomaterials: A review. J. Toxicol. Environ. Health B 19: 65–104.
  • Albanese, A. and Chan, W. C. W. 2011. Effect of gold nanoparticle aggregation on cell uptake and toxicity. ACS Nano 5: 5478–5489.
  • Alkilany, A. M., Nagaria, P. K., Hexel, C. R., Shaw, T. J., Murphy, C. J., and Wyatt, M. D. 2009. Cellular uptake and cytotoxicity of gold nanorods: Molecular origin of cytotoxicity and surface effects. Small. 5: 701–708.
  • Alkilany, A. M., Thompson, L. B., Boulos, S. P., Sisco, P. N., and Murphy, C. J. 2012. Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. ‎ Adv. Drug Deliv. Rev. 64: 190–199.
  • Asharani, P., Lian Wu, Y., Gong, Z., and Valiyaveettil, S. 2011. Comparison of the toxicity of silver, gold and platinum nanoparticles in developing zebrafish embryos. Nanotoxicology 5: 43–54.
  • Asharani, P. V., Lian Wu, Y., Gong, Z., and Valiyaveettil, S. 2008. Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 19: 255102.
  • Baptista, P. V., Doria, G., Quaresma, P., Cavadas, M., Neves, C. S., Gomes, I., Eaton, P., Pereira, E., and Franco, R. 2011. Nanoparticles in molecular diagnostics. Prog. Mol. Biol. Transl. Sci. 104: 427–488.
  • Botha, T. L., Boodhia, K., and Wepener, V. 2016. Adsorption, uptake and distribution of gold nanoparticles in Daphnia magna following long term exposure. Aquat. Toxicol. 170: 104–111.
  • Boxall, A., Chaudhry, Q., Sinclair, C., Jones, A., Aitken, R., Jefferson, B., and Watts, C. 2017. Current and future predicted environmental exposure to engineered nanoparticles. York, UK: Central Science Laboratory.
  • Bozich, J. S., Lohse, S. E., Torelli, M. D., Murphy, C. J., Hamers, R. J., and Klaper, R. D. 2014. Surface chemistry, charge and ligand type impact the toxicity of gold nanoparticles to Daphnia magna. Environ. Sci. Nano. 1: 260–270.
  • Browning, L. M., Huang, T., and Xu, X.-H. N. 2013. Real-time in vivo imaging of size-dependent transport and toxicity of gold nanoparticles in zebrafish embryos using single nanoparticle plasmonic spectroscopy. Interface Focus 3: 20120098.
  • Browning, L. M., Lee, K. J., Huang, T., Nallathamby, P. D., Lowman, J. E., and Nancy Xu, X.-H. 2009. Random walk of single gold nanoparticles in zebrafish embryos leading to stochastic toxic effects on embryonic developments. Nanoscale. 1: 138–152.
  • Chithrani, B. D., Ghazani, A. A., and Chan, W. C. 2006. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6: 662–668.
  • Dai, Y.-J., Jia, Y.-F., Chen, N., Bian, W.-P., Li, Q.-K., Ma, Y.-B., Chen, Y.-L., and Pei, D.-S. 2014. Zebrafish as a model system to study toxicology. Environ. Toxicol. Chem. 33: 11–17.
  • Dominguez, G. A., Lohse, S. E., Torelli, M. D., Murphy, C. J., Hamers, R. J., Orr, G., and Klaper, R. D. 2015. Effects of charge and surface ligand properties of nanoparticles on oxidative stress and gene expression within the gut of Daphnia magna. Aquat. Toxicol. 162: 1–9.
  • Dooley, K. and Zon, L. I. 2000. Zebrafish: A model system for the study of human disease. Curr. Opin. Genet. Dev. 10: 252–256.
  • Fang, T., Yu, L. P., Zhang, W. C., and Bao, S. P. 2015. Effects of humic acid and ionic strength on TiO2 nanoparticles sublethal toxicity to zebrafish. Ecotoxicol. 24: 2054–2066.
  • Galindo, T. P. S. 2014. Integrated risk assessment of nanoparticles in tropical and temperate ecosystems. ( PhD Dissertation). Portugal: University of Aveiro.
  • Galindo, T. P. S., Pereira, R., Freitas, A. C., Santos-Rocha, T. A. P., Rasteiro, M. G., Antunes, F., Rodrigues, D., Soares, A. M. V. M., Gonçalves, F., Duarte, A. C., and Lopes, I. 2013. Toxicity of organic and inorganic nanoparticles to four species of white-rot fungi. Sci. Total Environ. 458–460: 290–297.
  • García-Cambero, J. P., García, M. N., López, G. D., Herranz, A. L., Cuevas, L., Pérez-Pastrana, E., Cuadal, J. S., Castelltort, M. R., and Calvo, A. C. 2013. Converging hazard assessment of gold nanoparticles to aquatic organisms. Chemosphere. 93: 1194–1200.
  • Gatoo, M. A., Naseem, S., Arfat, M. Y., Dar, A. M., Qasim, K., and Zubair, S. 2014. Physicochemical properties of nanomaterials: Implication in associated toxic manifestations. Biomed. Res. Int. 2014: 498420.
  • Grzelczak, M., Pérez-Juste, J., Mulvaney, P., and Liz-Marzán, L. M. 2008. Shape control in gold nanoparticle synthesis. Chem. Soc. Rev. 37: 1783–1791.
  • Gunduz, N., Cevlan, H., Guler, M. O., and Tekinay, A. B. 2017. Intracellular accumulation of gold nanoparticles leads to inhibition of macropinocytosis to reduce the endoplasmic reticulum stress. Sci. Rep. 7: 40493.
  • Hartmann, N. B., Jensen, K. A., Baun, A., Rasmussen, K., Rauscher, H., Tantra, R., Cupi, D., Gilliland, D., Pianella, F., and Riego Sintes, J. M. 2015. Techniques and protocols for dispersing nanoparticle powders in aqueous media—is there a rationale for harmonization? J. Toxicol. Environ. Health B. 18: 299–326.
  • Hornos Carneiro, M. F. and Barbosa, F., Jr. 2016. Gold nanoparticles: A critical review of therapeutic applications and toxicological aspects. J. Toxicol. Environ. Health B. 19: 129–148.
  • Jana, N. R., Gearheart, L., and Murphy, C. J. 2001. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J. Phys. Chem. B 105: 4065–4067.
  • Janát-Amsbury, M., Ray, A., Peterson, C., and Ghandehari, H. 2011. Geometry and surface characteristics of gold nanoparticles influence their biodistribution and uptake by macrophages. Eur. J. Pharm. Biopharm. 77: 417–423.
  • Kermanizadeh, A., Gosens, I., MacCalman, L., Johnston, H., Danielsen, P. H., Jacobsen, N. R., Lenz, A.-G., Fernandes, T., Schins, R. P. F., Cassee, F. R., Wallin, H., Kreyling, W., Stoeger, T., Loft, S., Møller, P., Tran, L., and Stone, V. 2016. A multilaboratory toxicological assessment of a panel of 10 engineered nanomaterials to human health—ENPRA project—the highlights, limitations, and current and future challenges. J. Toxicol. Environ. Health B. 19: 1–28.
  • Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., and Schilling, T. F. 1995. Stages of embryonic development of the zebrafish. Dev. Dynam. 203: 253–310.
  • Kosmehl, T., Hallare, A. V., Reifferscheid, G., Manz, W., Braunbeck, T., and Hollert, H. 2006. A novel contact assay for testing genotoxicity of chemicals and whole sediments in zebrafish embryos. Environ. Toxicol. Chem. 25: 2097–2106.
  • Kumar, A., Zhang, X., and Liang, X.-J. 2013. Gold nanoparticles: Emerging paradigm for targeted drug delivery system. Biotechnol. Adv. 31: 593–606.
  • Lasagna-Reeves, C., Gonzalez-Romero, D., Barria, M. A., Olmedo, I., Clos, A., Sadagopa Ramanujam, V. W., Urayama, A., Vergada, I., Kogan, M. J., and Soto, C. 2010. Bioaccumulation and toxicity of gold nanoparticles after repeated administration in mice. Biochem. Biophys. Res. Commun. 393: 649–655.
  • Lee, W.-M., Yoon, S.-J., Shin, Y.-J., and An, Y.-J. 2015. Trophic transfer of gold nanoparticles from Euglena gracilis or Chlamydomonas reinhardtii to Daphnia magna. Environ. Pollut. 201: 10–16.
  • Li, N., Zhao, P., and Astruc, D. 2014. Anisotropic gold nanoparticles: Synthesis, properties, applications, and toxicity. Angew. Chem. Int. Ed. 53: 1756–1789.
  • Lima, D., Castro, L. F., Coelho, I., Lacerda, R., Gesto, M., Soares, J., André, A., Capela, R., Torres, T., Carvalho, A. P., and Santos, M. M. 2015. Effects of tributyltin and other retinoid receptor agonists in reproductive-related endpoints in the zebrafish (Danio rerio). J. Toxicol. Environ. Health. 78: 747–760.
  • Luyts, K., Napierska, D., Nemery, B., and Hoet, P. H. M. 2013. How physico-chemical characteristics of nanoparticles cause their toxicity: Complex and unresolved interrelations. Environ. Sci. Process Impacts 15: 23–38.
  • Lyche, J. L., Grześ, I. M., Karlsson, C., Nourizadeh-Lillabadi, R., Aleström, P., and Ropstad, E. 2016. Parental exposure to natural mixtures of persistent organic pollutants (POP) induced changes in transcription of apoptosis-related genes in offspring zebrafish embryos. J. Toxicol. Environ. Health. 79: 602–611.
  • Organisation for Economic Cooperation and Development (OECD). 2013. Test No. 236: Fish Embryo Acute Toxicity (FET) TEST. Paris, France: OECD Publishing.
  • Pan, J.-F., Buffet, P.-E., Poirier, L., Amiard-Triquet, C., Gilliland, D., Joubert, Y., Pilet, P., Guibbolini, M., De Faverney, C. R., and Roméo, M. 2012. Size dependent bioaccumulation and ecotoxicity of gold nanoparticles in an endobenthic invertebrate: The tellinid clam Scrobicularia plana. Environ. Pollut. 168: 37–43.
  • Park, S., Woodhall, J., Ma, G., Veinot, J. G. C., and Boxall, A. B. A. 2015. Do particle size and surface functionality affect uptake and depuration of gold nanoparticles by aquatic invertebrates? Environ. Toxicol. Chem. 34: 850–859.
  • Peters, R. H. 1986. The ecological implications of body size. Cambridge: Cambridge University Press.
  • Qian, H., Pretzer, L. A., Velazquez, J. C., Zhao, Z., and Wong, M. S. 2013. Gold nanoparticles for cleaning contaminated water. J. Chem. Technol. Biotechnol. 88: 735–741.
  • Saha, K., Agasti, S. S., Kim, C., Li, X., and Rotello, V. M. 2012. Gold nanoparticles in chemical and biological sensing. Chem. Rev. 112: 2739–2779.
  • Sandbacka, M., Christianson, I., and Isomaa, B. 2000. The acute toxicity of surfactants on fish cells, Daphnia magna and fish -A comparative study. Toxicol. In Vitro 14: 61–68.
  • Singh, N. P., McCoy, M. T., Tice, R. R., and Schneider, E. L. 1988. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 175: 184–191.
  • Tarantola, M., Pietuch, A., Schneider, D., Rother, J., Sunnick, E., Rosman, C., Pierrat, S., Sönnichsen, C., Wegener, J., and Janshoff, A. 2011. Toxicity of gold-nanoparticles: synergistic effects of shape and surface functionalization on micromotility of epithelial cells. Nanotoxicology 5: 254–268.
  • Tedesco, S., Doyle, H., Blasco, J., Redmond, G., and Sheehan, D. 2010. Exposure of the blue mussel, Mytilus edulis, to gold nanoparticles and the pro-oxidant menadione. Comp. Biochem. Physiol. Part C 151: 167–174.
  • Teles, M., Fierro-Castro, C., Na-Phatthalung, P., Tvarijonaviciute, A., Trindade, T., Soares, A. M. V. M., Tort, L., and Oliveira, M. 2016. Assessment of gold nanoparticle effects in a marine teleost (Sparus aurata) using molecular and biochemical biomarkers. Aquat. Toxicol. 177: 125–135.
  • Uusi-Heikkilä, S., Kuparinen, A., Wolter, C., Meinelt, T., and Arlinghaus, R. 2012. Paternal body size affects reproductive success in laboratory-held zebrafish (Danio rerio). Environ. Biol. Fish 93: 461–474.
  • Volker, C., Boedicker, C., Daubenthaler, J., Oetken, M., and Oehlmann, J. 2013. Comparative toxicity assessment of nanosilver on three Daphnia species in acute, chronic and multi-generation experiments. Plos One. 8: e75026.
  • Wan, J., Wang, J.-H., Liu, T., Xie, Z., Yu, X.-F., and Li, W. 2015. Surface chemistry but not aspect ratio mediates the biological toxicity of gold nanorods in vitro and in vivo. Sci. Rep. 5: 11398.
  • Wang, Z., Xie, D., Liu, H., Bao, Z., and Wang, Y. 2016. Toxicity assessment of precise engineered gold nanoparticles with different shapes in zebrafish embryos. Roy. Soc. Chem. Adv. 6: 33009–33013.
  • Weber, D. N., Hoffmann, R. G., Hoke, E. S., and Tanguay, R. L. 2015. Bisphenol A exposure during early development induces sex-specific changes in adult zebrafish social interactions. J. Toxicol. Environ. Health. 78: 50–66.
  • Wong, S. W., Leung, P. T., Djurisic, A. B., and Leung, K. M. 2010. Toxicities of nano zinc oxide to five marine organisms: influences of aggregate size and ion solubility. Anal. Bional. Chem. 396: 609–618.
  • Wray, A. T. and Klaine, S. J. 2015. Modeling the influence of physicochemical properties on gold nanoparticle uptake and elimination by Daphnia magna. Environ. Toxicol. Chem. 34: 860–872.
  • Xia, K., Zhang, L., Huang, Y., and Lu, Z. 2015. Preparation of gold nanorods and their applications in photothermal therapy. J. Nanosci. Nanotechnol. 15: 63–73.
  • Yu, P., Blondeau, J.-P., Andreazza, C., Ntsoenzok, E., Roussel, J., Dutheil, P., Thomann, A.-L., Caillard, A., Mustapha, E., and Meot, J. 2015. Influence of gold nanoparticles (Au NPs) for performance improvement of a-Si: H photovoltaic cells. Plasmonics 10: 691–701.
  • Zhao, J. and Castranova, V. 2011. Toxicology of nanomaterials used in nanomedicine. J. Toxicol. Environ. Health B. 14: 593–632.
  • Zhou, W., Gao, X., Liu, D., and Chen, X. 2015. Gold nanoparticles for in vitro diagnostics. Chem. Rev. 115: 10575–10636.
  • Zhu, X., Wang, J., Zhang, X., Chang, Y., and Chen, Y. 2010. Trophic transfer of TiO2 nanoparticles from Daphnia to zebrafish in a simplified freshwater food chain. Chemosphere. 79: 928–933.
  • Zhu, X. S., Tian, S. Y., and Cai, Z. H. 2012. Toxicity assessment of iron oxide nanoparticles in zebrafish (Danio rerio) early life stages. Plos One. 7: e46286.
  • Zhu, X. S., Wang, J. X., Zhang, X. Z., Chang, Y., and Chen, Y. S. 2009. The impact of ZnO nanoparticle aggregates on the embryonic development of zebrafish (Danio rerio). Nanotechnology 20: 195103.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.