132
Views
2
CrossRef citations to date
0
Altmetric
Articles

Optimization of microbial detoxification for an aquatic mercury-contaminated environment

, , &

References

  • Barkay, T., and I. Wagner-Dobler. 2005. Challenges and achievements in controlling mercury toxicity in the environment. Adv. Appl. Microbiol. 57:1–40.
  • Barker, T. B. 1985. Quality by experimental design. New York, USA: Marcel Dekker, Inc.
  • Box, G. E. P. 1985. Statistics for experimenters, eds. G. E. P. Box, W. G. Hunter, and J. S. Hunter. New York, USA: John Wiley & Sons.
  • Canário, J., V. Branco, and C. Vale. 2007. Seasonal variation of monomethylmercury concentrations in surface sediments of the Tagus Estuary (Portugal). Environ. Pollut. 148:380–383.
  • Canário, J., C. Vale, and M. Caetano. 2005. Distribution of monomethylmercury and mercury in surface sediments of the Tagus Estuary (Portugal). Mar. Pollut. Bull. 50:1142–1145.
  • Canário, J., C. Vale, M. Caetano, M. J. Madureira. 2003. Mercury in contaminated sediments and pore waters enriched in sulphate (Tagus Estuary, Portugal). Environ. Pollut. 126:425–433.
  • Canário, J., C. Vale, and M. Nogueira. 2008. The pathway of mercury in contaminated waters determined by association with organic carbon. Appl. Geochem. 23:519–528.
  • Carneiro, M. F., D. Grotto, and F. Barbosa, Jr. 2014. Inorganic and methylmercury levels in plasma are differentially associated with age, gender, and oxidative stress markers in a population exposed to mercury through fish consumption. J. Toxicol. Environ. Health A. 77:69–79.
  • Chiarle, S., M. Ratto, and M. Rovatti. 2000. Mercury removal from water by ion exchange resins adsorption. Water Res. 34:2971–2978.
  • Chien, M. F., M. Narita, K. H. Lin, K. Matsui, C. C. Huang, and G. Endo. 2010. Organomercurials removal by heterogeneous merB genes harboring bacterial strains. J. Biosci. Bioeng. 110:94–98.
  • Clarkson, T. W. 2002. The three modern faces of mercury. Environ. Health Persp. 110:11–23.
  • Costley, C. T., K. F. Mossop, J. R. Dean, L. M. Garden, J. Marshall, and J. Carroll. 2000. Determination of mercury in environmental and biological samples using pyrolysis atomic absorption spectrometry with gold amalgamation. Anal. Chim. Acta. 405:179–183.
  • Dabrowski, A., Z. Hubicki, P. Podkoscielny, and E. Robens. 2004. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere. 56:91–106.
  • Daoud, I., M. Mesmoud, and S. Chalem. 2012. Theoretical study: Interactions of copper (II), mercury (II) chloride with sucrose, glucose, and fructose in aqueous solutions. Der Pharma Chem. 4:1769–1775.
  • Das, S. K., A. R. Das, and A. K. Guha. 2007. A study on the adsorption mechanism of mercury on Aspergillus versicolor biomass. Environ. Sci. Technol. 41:8281–8287.
  • De, J., N. Ramaiah, and L. Vardanyan. 2008. Detoxification of toxic heavy metals by marine bacteria highly resistant to mercury. Mar. Biotechnol. 10:471–477.
  • de Oliveira Souza, V. C., K. C. de Marco, H. J. Laure, J. C. Rosa, F. Barbosa, Jr. 2016. A brain proteome profile in rats exposed to methylmercury or thimerosal (ethylmercury). J. Toxicol. Environ. Health A. 79:502–512.
  • EFSA. 2015. Benefits of fish/seafood consumption vs. risks of methylmercury. EFSA J. 13:3982.
  • Essa, A. M. M., L. E. Macaskie, and N. L. Brown. 2002. Mechanisms of mercury bioremediation. Biochem. Soc. Trans. 30:672–674.
  • Figueiredo, N. L., A. Areias, R. Mendes, J. Canário, A. Duarte, and C. Carvalho. 2014b. Mercury-resistant bacteria from saltmarsh of Tagus Estuary: The influence of plants presence and mercury contamination levels. J. Toxicol. Environ. Health A. 77:959–971.
  • Figueiredo, N. L., J. Canário, A. Duarte, M. L. Serralheiro, and C. Carvalho. 2014a. Isolation and characterization of mercury-resistant bacteria from sediments of Tagus Estuary (Portugal): Implications for environmental and human health risk assessment. J. Toxicol. Environ. Health A. 77:155–168.
  • Figueiredo, N. L., J. Canário, N. J. O’Driscoll, A. Duarte, and C. Carvalho. 2016. Aerobic mercury-resistant bacteria alter mercury speciation and retention in the Tagus Estuary (Portugal). Ecotoxicol. Environ. Saf. 124:60–67.
  • Figuères, G., J. M. Martin, M. Meybeck, and P. Seyler. 1985. A comparative study of mercury contamination in the Tagus Estuary (Portugal) and major French Estuaries (Gironde, Loire, Rhône). Est. Coast. Shelf Sci. 20:183–203.
  • François, F., C. Lombard, J. M. Guigner, P. Soreau, F. Brian-Jaisson, G. Martino, M. Vandervennet, D. Garcia, A. L. Molinier, D. Pignol, J. Peduzzi, S. Zirah, and S. Rebuffat. 2011. Isolation and characterization of environmental bacteria capable of extracellular biosorption of mercury. Appl. Environ. Microbiol. 78:1097–1106.
  • Gadd, G. M. 2010. Metals, minerals and microbes: Geomicrobiology and bioremediation. Microbiology. 156:609–643.
  • Glendinning, K. J., L. E. Macaskie, and N. L. Brown. 2005. Mercury tolerance of thermo-philic Bacillus sp. and Ureibacillus sp. Biotechnol. Lett. 27: 1657–1662.
  • Gundogdu, T. K., I. Deniz, G. Calıskan, E. S. Sahin, and N. Azbar. 2014. Experimental design methods for bioengineering applications. Crit. Rev. Biotechnol. Early Online:1–21.
  • Iwahori, K., F. Takeuchi, K. Kamimura, and T. Sugio. 2000. Ferrous iron-dependent volatilization of mercury by the plasma membrane of Thiobacillus ferrooxidans. Appl. Environ. Microbiol. 66:3823–3827.
  • Kim, C. S., J. J. Rytuba, and G. E. Brown. 2004. EXAFS study of mercury (II) sorption to Fe- and Al-(hydr)oxides II. Effects of chloride and sulfate. J. Colloid Interface Sci. 270:9–20.
  • Manohar, D. M., K. Anoop Krishnan, and T. S. Anirudhan. 2002. Removal of mercury(II) from aqueous solutions and chlor-alkali industry wastewater using 2-mercaptobenzimidazole-clay. Water Res. 36: 1609–1619.
  • Mathema, V. B., B. C. Thakuri, and M. Sillanpaa. 2011. Bacterial mer operon-mediated detoxification of mercurial compounds: A short review. Arch. Microbiol. 193:837–844.
  • Nascimento, A. M. A., and E. Chartone-Souza. 2003. Operon mer: Bacterial resistance to mercury and potential for bioremediation of contaminated environments. Genet. Mol. Res. 2:92–101.
  • Oyetibo, G. O., K. Miyauchi, H. Suzuki, and G. Endo. 2016. Mercury removal during growth of mercury tolerant and self‑aggregating Yarrowia spp. AMB Express. 6:99.
  • Parks, J. M., H. Guo, C. Momany, L. Liang, S. M. Miller, A. O. Summers, and J. C. Smith. 2009. Mechanism of Hg–C protonolysis in the organomercurial lyase MerB. J. Am. Chem. Soc. 131:13278–13285.
  • Pepi, M., C. Gaggi, E. Bernardini, S. Focardi, A. Lobianco, M. Ruta, V. Nicolardi, M. Volterrani, and S. Gasperini. 2011. Mercury- resistant bacterial strains Pseudomonas and Psychrobacter spp. isolated from sediments of Orbetello Lagoon (Italy) and their possible use in bioremediation processes. Int. Biodeterior. Biodegradation. 65:85–91.
  • Schaefer, J. K., J. Yagi, J. R. Reinfelder, T. Cardona, K. M. Ellickson, S. Tel-Or, and T. Barkay. 2004. Role of the bacterial organomercury lyase (MerB) in controlling me-thylmercury accumulation in mercury-contaminated natural waters. Environ. Sci. Technol. 38:4304–4311.
  • Siciliano, S. D., N. J. O’Driscoll, and D. R. S. Lean. 2002. Microbial reduction and oxidation of mercury in freshwater lakes. Environ. Sci. Technol. 36:3064–3068.
  • Sinha, A., and S. K. Khare. 2011. Mercury bioremediation by mercury accumulating Enterobacter sp. cells and its alginate immobilized application. Biodegradation. 23:25–34.
  • Slowey, A., and G. E. Brown. 2007. Transformations of mercury, iron, and sulfur during the reductive dissolution of iron oxyhydroxide by sulfide. Geochim. Cosmochim. Acta. 71:877–894.
  • Sugio, T., M. Fujii, Y. Ninomiya, T. Kanao, A. Negishi, and F.Takeuchi. 2008. Reduction of Hg2+ with reduced mammalian cytochrome c by cytochrome c oxidase purified from a mercury-resistant Acidithiobacillus ferrooxidans strain, MON-1. Biosci. Biotechnol. Biochem. 72: 1756–1763.
  • Sugio, T., M. Fujii, F. Takeuchi, A. Negishi, T. Maeda, and K. Kamimura. 2003. Volatilization of mercury by an iron oxidation enzyme system in a highly mercury-resistant Acidithiobacillus ferrooxidans strain MON-1. Biosci. Biotechnol. Biochem. 67:1537–1544.
  • UNEP (United Nations Environment Programme). 2013. Global mercury assessment 2013: Sources, emissions, releases and environmental transport. Geneva, Switzerland: UNEP Chemicals Branch.
  • Wagner-Dobler, I. 2003. Pilot plant for bioremediation of mercury-containing industrial wastewater. Appl. Microbiol. Biotechnol. 62:124–133.
  • Wagner-Dobler, I., H. von Canstein, Y. Li, K. N. Timmis, and W. D. Deckwer. 2000. Removal of mercury from chemical wastewater by microorganisms in technical scale. Environ. Sci. Technol. 34:4628–4634.
  • Wiatrowski, H. A., P. M. Ward, and T. Barkay. 2006. Novel reduction of mercury(II) by mercury-sensitive dissimilatory metal reducing bacteria. Environ. Sci. Technol. 40:6690–6696.
  • Wolff, S, G. Brown, J. Chen, K. Meals, C. Thornton, S. Brewer, J. V. Cizdziel, and K. L. Willett. 2016. Mercury concentrations in fish from three major lakes in north Mississippi: Spatial and temporal differences and human health risk assessment. J. Toxicol. Environ. Health A. 79:894–904.
  • Yardim, M. F., T. Budinova, E. Ekinci, N. Petrov, M. Razvigorova, and V. Minkova. 2003. Removal of mercury (II) from aqueous solution by activated carbon obtained from furfural. Chemosphere. 52:835–841.
  • Yu, M. 2005. Environmental toxicology: Biological and health effects of pollutants. 2nd Edition. Florida, USA: CRC Press.
  • Zhang, W., L. Chen, and D. Liu. 2012. Characterization of a marine-isolated mercury-resistant Pseudomonas putida strain SP1 and its potential application in marine mercury reduction. Appl. Microbiol. Biotechnol. 93:1305–1314.
  • Zhang, F. S., J. O. Nriagu, and H. Itoh. 2005. Mercury removal from water using activated carbons derived from organic sewage sludge. Water Res. 39:389–395.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.