161
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Methylmercury exposure for 14 days (short-term) produces behavioral and biochemical changes in mouse cerebellum, liver, and serum

, , , , &

References

  • Allain, C. C., L. S. Poon, C. S. Chan, W. Richmond, and P. C. Fu. 1974. Enzymatic determination of total serum cholesterol. Clin. Chem. 20:470–475.
  • Barbosa, F., Jr. 2017. Toxicology of metals and metalloids: promising issues for future studies in environmental health and toxicology. J. Toxicol. Environ. Heath A 80:137–144.
  • Bassett, T., P. Bach, and H. M. Chan. 2012. Effects of methylmercury on the secretion of pro-inflammatory cytokines from primary microglial cells and astrocytes. Neurotoxicology 33:229–234.
  • Bergmeyer, H. U. 1985. Methods of enzymatic analysis. VCH Publishers 9:449–453.
  • Bergmeyer, H. V., P. Scheibe, and A. W. Wahlefeld. 1978. Optimization of methods for aspartate aminotransferase and alanine aminotransferase. Clin. Chem. 24:58–73.
  • Bisen-Hersh, E. B., M. Farina, F. Barbosa, Jr., J. B. Rocha, and M. Aschner. 2014. Behavioral effects of developmental methylmercury drinking water exposure in rodents. J. Trace Elem. Med. Biol. 28:117–124.
  • Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 7:248–254.
  • Branco, V., S. Caito, M. Farina, J. B. Rocha, M. Aschner, and C. Carvalho. 2017. Biomarkers of mercury toxicity: past, present, and future trends. J. Toxicol. Environ. Heath B 20:119–154.
  • Bridges, C. C., and R. K. Zalups. 2017. The aging kidney and the nephrotoxic effects of mercury. J. Toxicol. Environ. Heath B 20:55–80.
  • Carlberg, I., and B. Mannervik. 1985. Glutathione reductase. Meth. Enzymol. 113:484–490.
  • Carter, R. J., L. A. Lione, T. Humby, L. Mangiarini, A. Mahal, G. P. Bates, S. B. Dunnett, and A. J. Morton. 1999. Characterization of progressive motor deficits in mice transgenic for the human Huntington’s disease mutation. J. Neurosci. 19:3248–3257.
  • Carvalho, M. C., J. L. Franco, H. Ghizoni, K. Kobus, E. M. Nazari, J. B. Rocha, C. W. Nogueira, A. L. Dafre, Y. M. Müller, and M. Farina. 2007. Effects of 2,3-dimercapto-1-propanesulfonic acid (DMPS) on methylmercury-induced locomotor deficits and cerebellar toxicity in mice. Toxicol. 239:195–203.
  • Ceccatelli, S., E. Daré, and M. Moors. 2010. Methylmercury-induced neurotoxicity and apoptosis. Chem. Biol. Interact. 188:301–308.
  • Choi, A. L., and P. Grandjean. 2008. Methylmercury exposure and health effects in humans. Environ. Chem. 5:112–120.
  • Choi, A. L., P. Weihe, E. Budtz-Jørgensen, P. J. Jørgensen, J. T. Salonen, T. P. Tuomainen, K. Murata, H. P. Nielsen, M. S. Petersen, J. Askham, and P. Grandjean. 2009. Methylmercury exposure and adverse cardiovascular effects in Faroese whaling men. Environ. Health Persp. 117:367–372.
  • Clarkson, T. W., L. Magos, and G. J. Myers. 2003. The toxicology of mercury current exposures and clinical manifestations. N. Engl. J. Med. 349:1731–1737.
  • Clarkson, T. W., J. B. Vyas, and N. Ballatori. 2007. Mechanisms of mercury disposition in the body. Am. J. Ind. Med. 50:757–764.
  • Dalla Corte, C. L., C. Wagner, J. H. Sudati, B. Comparsi, G. O. Leite, A. Busanello, F. A. Soares, M. Aschner, and J. B. Rocha. 2013. Effects of diphenyl diselenide on methylmercury toxicity in rats. Biomed. Res. Int. 2013: 983821.
  • de Freitas, A. S., V. R. Funck, M. dos Santos Rotta, D. Bohrer, V. Mörschbächer, R. L. Puntel, C. W. Nogueira, M. Farina, M. Aschner, and J. B. Rocha. 2009. Diphenyl diselenide, a simple organoselenium compound, decreases methylmercury-induced cerebral, hepatic and renal oxidative stress and mercury deposition in adult mice. Brain Res. Bull. 79:77–84.
  • Dietrich, M. O., C. E. Mantese, G. D. Anjos, D. O. Souza, and M. Farina. 2005. Motor impairment induced by oral exposure to methylmercury in adult mice. Environ. Toxicol. Pharmacol. 19:169–175.
  • Dunham, N. W., and T. S. Miya. 1957. A note on a simple apparatus for detecting neurological deficit in rats and mice. J. Am. Pharm. Assoc. Am. Pharm. Assoc. (Baltim) 46:208–209.
  • Farina, M., M. Aschner, and J. B. Rocha. 2011b. Oxidative stress in MeHg-induced neurotoxicity. Toxicol. Appl. Pharmacol. 256:405–417.
  • Farina, M., J. B. Rocha, and M. Aschner. 2011a. Mechanisms of methylmercury-induced neurotoxicity: evidence from experimental studies. Life Sci. 89:555–563.
  • Franco, J. L., A. Teixeira, F. C. Meotti, C. M. Ribas, J. Stringari, S. C. Garcia Pomblum, A. M. Moro, D. Bohrer, A. V. Bairros, A. L. Dafre, A. R. Santos, and M. Farina. 2006. Cerebellar thiol status and motor deficit after lactational exposure to methylmercury. Environ. Res. 102:22–28.
  • Furukawa, K., I. Fuse, Y. Iwakura, H. Sotoyama, O. Hanyu, H. Nawa, H. Sone, and N. Takei. 2017. Advanced glycation end products induce brain-derived neurotrophic factor release from human platelets through the Src-family kinase activation. Cardiovasc. Diabetol. 16:20.
  • Gadient, R. A., and U. H. Otten. 1997. Interleukin-6 (IL-6)-a molecule with both beneficial and destructive potentials. Prog. Neurobiol. 52:379–390.
  • Glaser, V., B. Moritz, A. Schmitz, A. L. Dafré, E. M. Nazari, Y. M. Rauh Müller, L. Feksa, M. R. Straliottoa, A. F. De Bem, M. Farina, J. B. Da Rocha, and A. Latini. 2013. Protective effects of diphenyl diselenide in a mouse model of brain toxicity. Chem. Biol. Interact. 206:18–26.
  • González-Estecha, M., A. Bodas-Pinedo, J. J. Guillén-Pérez, M. Á. Rubio-Herrera, J. M. Ordóñez-Iriarte, E. M. Trasobares-Iglesias, N. Martell-Claros, J. R. Martínez-Álvarez, R. Farré-Rovira, M. Á. Herráiz-Martínez, T. Martínez-Astorquiza, E. Calvo-Manuel, M. Sáinz-Martín, I. Bretón-Lesmes, S. Prieto-Menchero, M. T. Llorente-Ballesteros, M. J. Martínez-García, J. Salas-Salvadó, P. Bermejo-Barrera, J. A. García-Donaire, M. Á. Cuadrado-Cenzual, C. Gallardo-Pino, R. Moreno-Rojas, M. Arroyo-Fernández, and A. Calle-Pascual. 2014. Methylmercury exposure in the general population; toxicokinetics; differences by gender, nutritional and genetic factors. Nutr. Hosp. 30:969–988.
  • Heath, J. C., K. M. Banna, M. N. Reed, E. F. Pesek, N. Cole, J. Li, and M. C. Newland. 2010. Dietary selenium protects against selected signs of aging and methylmercury exposure. Neurotoxicol. 31:169–179.
  • Hoff, J. 2000. Methods of blood collection in the mouse. Lab. Anim. 29:47–53.
  • Jin, X., N. Hidiroglou, E. Lok, M. Taylor, K. Kapal, N. Ross, K. Sarafin, A. Lau, A. De Souza, H. M. Chan, and R. Mehta. 2012. Dietary selenium (Se) and vitamin E (V(E)) supplementation modulated methylmercury-mediated changes in markers of cardiovascular diseases in rats. Cardiovasc. Toxicol. 12:10–24.
  • Karagas, M. R., A. L. Choi, E. Oken, M. Horvat, R. Schoeny, E. Kamai, W. Cowell, P. Grandjean, and S. Korrick. 2012. Evidence on the human health effects of low-level methylmercury exposure. Environ. Health Persp. 120:799–806.
  • Kirkpatrick, M., J. Benoit, W. Everett, J. Gibson, M. Rist, and N. Fredette. 2015. The effects of methylmercury exposure on behavior and biomarkers of oxidative stress in adult mice. Neurotoxicol. 50:170–178.
  • Li, S. J., S. H. Zhang, H. P. Chen, C. H. Zeng, C. X. Zheng, and L. S. Li. 2010. Mercury-induced membranous nephropathy: clinical and pathological features. Clin. J. Am. Soc. Nephrol. 5:439–444.
  • Lin, Y. S., G. Ginsberg, J. L. Caffrey, J. Xue, S. V. Vulimiri, R. G. Nath, and B. Sonawane. 2014. Association of body burden of mercury with liver function test status in the U.S. population. Environ. Int. 70:88–94.
  • Miller, S., S. Pallan, A. S. Gangji, D. Lukic, and C. M. Clase. 2013. Mercury-associated nephrotic syndrome: A case report and systematic review of the literature. Am. J. Kidney Dis. 62:135–138.
  • Moreira, E. L., J. De Oliveira, M. F. Dutra, D. B. Santos, C. A. Gonçalves, E. M. Goldfeder, A. F. De Bem, R. D. Prediger, M. Aschner, and M. Farina. 2012. Does methylmercury-induced hypercholesterolemia play a causal role in its neurotoxicity and cardiovascular disease? Toxicol. Sci. 130:373–382.
  • Moretto, M. B., C. Funchal, A. Q. Santos, C. Gottfried, B. Boff, G. Zeni, R. P. Pureur, D. O. Souza, S. Wofchuk, and J. B. Rocha. 2005. Ebselen protects glutamate uptake inhibition caused by methyl mercury but does not by Hg2+. Toxicol. 214:57–66.
  • Myers, G. J., P. W. Davidson, C. Cox, C. F. Shamlaye, M. A. Tanner, D. O. Marsh, E. Cernichiari, L. W. Lapham, M. Berlin, and T. W. Clarkson. 1995. Summary of the Seychelles child development study on the relationship of fetal methylmercury exposure to neurodevelopment. Neurotoxicol. 16:711–716.
  • National Research Council. 2000. Toxicological effects of methylmercury. Washington, DC: National Academy Press.
  • Noguchi, Y., Y. Shinozaki, K. Fujishita, K. Shibata, Y. Imura, Y. Morizawa, C. Gachet, and S. Koizumi. 2013. Astrocytes protect neurons against methylmercury via ATP/P2Y(1) receptor-mediated pathways in astrocytes. PLoS One 8:e57898.
  • Ogawa, N., Y. Hirose, S. Ohara, T. Ono, and Y. Watanabe. 1985. A simple quantitative bradykinesia test in MPTP-treated mice. Res. Commun. Chem. Pathol. Pharmacol. 50:435–441.
  • Parasuraman, S. 2011. Toxicological screening. J. Pharmacol. Pharmacother. 2:74–79.
  • Park, J. D., and W. J. Zheng. 2012. Human exposure and health effects of inorganic and elemental mercury. Prev. Med. Public Health 45:344–352.
  • Reyes, E. S., J. J. Aristizabal Henao, K. M. Kornobis, R. M. Hanning, S. E. Majowicz, K. Liber, K. D. Stark, G. Low, H. K. Swanson, and B. D. Laird. 2017. Associations between omega-3 fatty acids, selenium content, and mercury levels in wild-harvested fish from the Dehcho Region, Northwest Territories, Canada. J. Toxicol. Environ. Heath A 80:18–31.
  • Rice, K. M., E. M. Walker, Jr., M. Wu, C. Gillette, and E. R. Blough. 2014. Environmental mercury and its toxic effects. J. Prev. Med. Public Health 47:74–83.
  • Ross, D. H., R. L. Puntel, M. Farina, M. Aschner, D. Bohrer, J. B. Rocha, and N. B. de Vargas Barbosa. 2011. Modulation of methylmercury uptake by methionine: prevention of mitochondrial dysfunction in rat liver slices by a mimicry mechanism. Toxicol. Appl. Pharmacol. 252:28–35.
  • Ross, D. H., R. L. Puntel, T. H. Lugokenski, R. P. Ineu, D. Bohrer, M. E. Burger, J. L. Franco, M. Farina, M. Aschner, J. B. Rocha, and N. B. De Vargas Barbosa. 2010. Complex methylmercury-cysteine alters mercury accumulation in different tissues of mice. Basic. Clin. Pharmacol. Toxicol. 107:789–792.
  • Salonen, J. T., K. Seppänen, K. Nyyssönen, H. Korpela, J. Kauhanen, M. Kantola, J. Tuomilehto, H. Esterbauer, F. Tatzber, and R. Salonen. 1995. Intake of mercury from fish, lipid peroxidation, and the risk of myocardial infarction and coronary, cardiovascular, and any death in eastern Finnish men. Circ. 91:645–655.
  • Society of Toxicology. 2017. Guiding principles in the use of animals in toxicology. United States of America. Society of Toxicology. https://www.toxicology.org/pubs/statements/statements.asp
  • Sweet, L. I., and J. T. Zelikoff. 2001. Toxicology and immunotoxicology of mercury: a comparative review in fish and humans. J. Toxicol. Environ. Heath B 4:161–205.
  • Takemoto, T., Y. Ishihara, A. Ishida, and T. Yamazaki. 2015. Neuroprotection elicited by nerve growth factor and brain-derived neurotrophic factor released from astrocytes in response to methylmercury. Environ. Toxicol. Pharmacol. 40:199–205.
  • US Department of Health and Human Services, Public Health Service. 1999. Toxicological profile for mercury, 1–600. Atlanta: US Department of Health and Human Services.
  • Wang, H., N. Ward, M. Boswell, and D. M. Katz. 2006. Secretion of brain-derived neurotrophic factor from brain microvascular endothelial cells. Eur. J. Neurosci. 23:1665–1670.
  • Wendel, A. 1981. Glutatione peroxidase. Meth. Enzymol. 77:325–333.
  • Wolff, S., G. Brown, J. Chen, K. Meals, C. Thornton, S. Brewer, J. V. Cizdziel, and K. L. Willett. 2016. Mercury concentrations in fish from three major lakes in north Mississippi: Spatial and temporal differences and human health risk assessment. J. Toxicol. Environ. Heath A 80:894–904.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.