436
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Methionine-supplemented diet affects the expression of cardiovascular disease-related genes and increases inflammatory cytokines in mice heart and liver

ORCID Icon, ORCID Icon, ORCID Icon, , , , , & ORCID Icon show all

References

  • Aissa, A. F., T. D. Gomes, M. R. Almeida, L. C. Hernandes, J. D. Darin, M. L. Bianchi, and L. M. Antunes. 2013. Methionine concentration in the diet has a tissue-specific effect on chromosomal stability in female mice. Food Chem. Toxicol. 62:456–462.
  • Aissa, A. F., V. Tryndyak, A. De Conti, S. Melnyk, T. D. Gomes, M. L. Bianchi, S. J. James, F. A. Beland, L. M. Antunes, and I. P. Pogribny. 2014. Effect of methionine-deficient and methionine-supplemented diets on the hepatic one-carbon and lipid metabolism in mice. Mol. Nutr. Food Res. 58:1502–1512.
  • Ait-Oufella, H., S. Taleb, Z. Mallat, and A. Tedgui. 2011. Recent advances on the role of cytokines in atherosclerosis. Arteriosclerosis Thromb. Vasc. Biol. 31:969–979.
  • Alkhoury, K., S. M. Parkin, S. Homer-Vanniasinkam, and A. M. Graham. 2011. Chronic homocysteine exposure upregulates endothelial adhesion molecules and mediates leukocyte: endothelial cell interactions under flow conditions. Eur. J. Vasc. Endovasc. Surg. 41:429–435.
  • Angulo, P. 2002. Nonalcoholic fatty liver disease. N. Engl. J. Med. 346:1221–1231.
  • Atta, H. M., M. A. El-Rehani, S. A. Raheim, and A. M. F. Galal. 2008. Lowering homocysteine decreases levels and expression of VEGF(165) and endostatin. J. Surg. Res. 146:202–210.
  • Barandier, C., J. P. Montani, and Z. Yang. 2005. Mature adipocytes and perivascular adipose tissue stimulate vascular smooth muscle cell proliferation: effects of aging and obesity. Am. J. Physiol. Heart Circ. Physiol. 289:H1807–H1813.
  • Beauchamp, N. J., T. A. E. Van Achterberg, M. A. Engelse, H. Pannekoek, and C. J. M. De Vries. 2003. Gene expression profiling of resting and activated vascular smooth muscle cells by serial analysis of gene expression and clustering analysis. Genomics 82:288–299.
  • Corbin, K. D., and S. H. Zeisel. 2012. Choline metabolism provides novel insights into nonalcoholic fatty liver disease and its progression. Curr. Opin. Gastroenterol. 28:159–165.
  • Daher, C. F., R. Slaiby, N. Haddad, K. Boustany, and G. M. Baroody. 2006. Effect of acute and chronic moderate red or white wine consumption on fasted and postprandial lipemia in the rat. J. Toxicol. Environ. Health Part A 69:1117–1131.
  • De Alwis, N. M. W., and C. P. Day. 2008. Non-alcoholic fatty liver disease: the mist gradually clears. J. Hepatol. 48:S104–S112.
  • Duan, J. L., T. Murohara, H. Ikeda, K. Sasaki, S. Shintani, T. Akita, T. Shimada, and T. Imaizumi. 2000. Hyperhomocysteinemia impairs angiogenesis in response to hindlimb ischemia. Arteriosclerosis Thromb. Vasc. Biol. 20:2579–2585.
  • Elshorbagy, A. K., M. Valdivia-Garcia, H. Refsum, A. D. Smith, D. A. L. Mattocks, and C. E. Perrone. 2010. Sulfur amino acids in methionine-restricted rats: hyperhomocysteinemia. Nutrition 26:1201–1204.
  • Finkelstein, J. D., J. J. Martin, and B. J. Harris. 1988. Methionine metabolism in mammals. The methionine-sparing effect of cystine. J. Biol. Chem. 263:11750–11754.
  • Fito, M., and V. Konstantinidou. 2016. Nutritional genomics and the Mediterranean diet’s effects on human cardiovascular health. Nutrients 8:218.
  • Fito, M., O. Melander, J. A. Martinez, E. Toledo, C. Carpene, and D. Corella. 2016. Advances in integrating traditional and omic biomarkers when analyzing the effects of the Mediterranean diet intervention in cardiovascular prevention. Int. J. Mol. Sci. 17:9.
  • Ford, A. H., L. Flicker, K. McCaul, F. Van Bockxmeer, S. Hegarty, V. Hirani, S. Fenner, and O. P. Almeida. 2010. The B-VITAGE trial: A randomized trial of homocysteine lowering treatment of depression in later life. Trials 11:8.
  • Ford, A. H., G. J. Garrido, C. Beer, N. T. Lautenschlager, L. Arnolda, L. Flicker, and O. P. Almeida. 2012. Homocysteine, grey matter and cognitive function in adults with cardiovascular disease. PloS One 7:3.
  • Frolova, E. G., E. Pluskota, I. Krukovets, T. Burke, C. Drumm, J. D. Smith, L. Blech, M. Febbraio, P. Bornstein, E. F. Plow, and O. I. Stenina. 2010. Thrombospondin-4 regulates vascular inflammation and atherogenesis. Circ. Res. 107:1313–1325.
  • Garelnabi, M., K. Lor, J. Jin, F. Chai, and N. Santanam. 2013. The paradox of ApoA5 modulation of triglycerides: evidence from clinical and basic research. Clin. Biochem. 46:12–19.
  • Ghosh, S., D. Wanders, K. P. Stone, N. T. Van, C. C. Cortez, and T. W. Gettys. 2014. A systems biology analysis of the unique and overlapping transcriptional responses to caloric restriction and dietary methionine restriction in rats. Faseb J. 28:2577–2590.
  • Glenn, D. J., M. C. Cardema, W. Ni, Y. Zhang, Y. Yeghiazarians, D. Grapov, O. Fiehn, and D. G. Gardner. 2015. Cardiac steatosis potentiates angiotensin II effects in the heart. Am. J. Physiol. Heart Circ. Physiol. 308:H339–H350.
  • Gomez-Guerrero, C., B. Mallavia, and J. Egido. 2012. Targeting inflammation in cardiovascular diseases. Still a neglected field? Cardiovasc. Ther. 30:e189–e197.
  • Haas, M. E., A. D. Attie, and S. B. Biddinger. 2013. The regulation of ApoB metabolism by insulin. Trends Endocrinol. Metab. 24:391–397.
  • Hansson, G. K. 2005. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 352:1685–1695.
  • Hasuike, Y., Y. Hama, H. Nonoguchi, K. Hori, M. Tokuyama, K. Toyoda, S. Hazeki, M. Nanami, Y. Otaki, T. Kuragano, and T. Nakanishi. 2012. Persistent homocysteine metabolism abnormality accelerates cardiovascular disease in hemodialyzed patients–the Nishinomiya Study. J. Renal. Nutr. 22:12–8e1.
  • Holm, P. W., R. H. J. A. Slart, C. J. Zeebregts, J. L. Hillebrands, and R. A. Tio. 2009. Atherosclerotic plaque development and instability: A dual role for VEGF. Ann. Med. 41:257–264.
  • Huang, X. S., S. P. Zhao, M. Hu, L. Bai, Q. Zhang, and W. Zhao. 2010. Decreased apolipoprotein A5 is implicated in insulin resistance-related hypertriglyceridemia in obesity. Atherosclerosis 210:563–568.
  • Ingenbleek, Y., and K. S. McCully. 2012. Vegetarianism produces subclinical malnutrition, hyperhomocysteinemia and atherogenesis. Nutrition 28:148–153.
  • Jiang, Y. D., T. Sun, J. T. Xiong, J. Cao, G. Z. Li, and S. R. Wang. 2007. Hyperhomocysteinemia-mediated DNA hypomethylation and its potential epigenetic role in rats. Acta Biochim. Biophys. Sinica 39:657–667.
  • Juan, W., M. Nakazawa, K. Watanabe, M. Ma, M. I. I. Wahed, G. Hasegawa, M. Naito, T. Yamamoto, K. Fuse, K. Kato, M. Kodama, and Y. Aizawa. 2003. Quinapril inhibits progression of heart failure and fibrosis in rats with dilated cardiomyopathy after myocarditis. Mol. Cell. Biochem. 251:77–82.
  • Kluger, M., J. Heeren, and M. Merkel. 2008. Apoprotein A-V: an important regulator of triglyceride metabolism. J. Inherit. Metab. Dis. 31:281–288.
  • Kotronen, A., and H. Yki-Jarvinen. 2008. Fatty liver - A novel component of the metabolic syndrome. Arteriosclerosis Thromb. Vasc. Biol. 28:27–38.
  • Leach, N. V., E. Dronca, S. C. Vesa, D. P. Sampelean, E. C. Craciun, M. Lupsor, D. Crisan, R. Tarau, R. Rusu, I. Para, and M. Grigorescu. 2014. Serum homocysteine levels, oxidative stress and cardiovascular risk in non-alcoholic steatohepatitis. Eur. J. Intern. Med. 25:762–767.
  • Lee, S. A. 2009. Gene-diet interaction on cancer risk in epidemiological studies. J. Prev. Med. Public Health 42:360–370.
  • Libby, P. 2012. Inflammation in atherosclerosis. Arteriosclerosis Thromb. Vasc. Biol. 32:2045–2051.
  • Libby, P., P. M. Ridker, and A. Maseri. 2002. Inflammation and atherosclerosis. Circulation 105:1135–1143.
  • Lu, S. C. 2009. Regulation of glutathione synthesis. Mol. Aspects Med. 30:42–59.
  • Machado, M. V., G. A. Michelotti, G. Xie, T. P. De Almeida, J. Boursier, B. Bohnic, C. D. Guy, and A. M. Diehl. 2015. Mouse models of diet-induced nonalcoholic steatohepatitis reproduce the heterogeneity of the human disease. PLoS ONE 10:e0127991.
  • Malloy, V. L., R. A. Krajcik, S. J. Bailey, G. Hristopoulos, J. D. Plummer, and N. Orentreich. 2006. Methionine restriction decreases visceral fat mass and preserves insulin action in aging male Fischer 344 rats independent of energy restriction. Aging Cell 5:305–314.
  • Mannam, V. K., R. E. Lewis, and J. M. Cruse. 2013. The fate of renal allografts hinges on responses of the microvascular endothelium. Exp. Mol. Pathol. 94:398–411.
  • Marchesini, G., S. Moscatiello, S. Di Domizio, and G. Forlani. 2008. Obesity-associated liver disease. J. Clin. Endocrinol. Metab. 93 (Suppl 1):S74–S80.
  • Matteini, A. M., J. D. Walston, K. Bandeen-Roche, D. E. Arking, R. H. Allen, L. P. Fried, A. Chakravarti, S. P. Stabler, and M. D. Fallin. 2010. Transcobalamin-II variants, decreased vitamin B12 availability and increased risk of frailty. J. Nutr. Health Aging 14:73–77.
  • Mazza, A., A. F. Cicero, E. Ramazzina, S. Lenti, L. Schiavon, E. Casiglia, and G. Gussoni. 2016. Nutraceutical approaches to homocysteine lowering in hypertensive subjects at low cardiovascular risk: A multicenter, randomized clinical trial. J. Biol. Reg. Homeost. Agents 30:921–927.
  • Nishina, K., T. Unno, Y. Uno, T. Kubodera, T. Kanouchi, H. Mizusawa, and T. Yokota. 2008. Efficient in vivo delivery of siRNA to the liver by conjugation of alpha-tocopherol. Mol. Ther. 16:734–740.
  • Orentreich, N., J. R. Matias, A. DeFelice, and J. A. Zimmerman. 1993. Low methionine ingestion by rats extends life span. J. Nutr. 123:269–274.
  • Orgeron, M. L., K. P. Stone, D. Wanders, C. C. Cortez, N. T. Van, and T. W. Gettys. 2014. The impact of dietary methionine restriction on biomarkers of metabolic health. Prog. Mol. Biol. Translational Sci. 121:351–376.
  • Packard, R. R. S., and P. Libby. 2008. Inflammation in atherosclerosis: from vascular biology to biomarker discovery and risk prediction. Clin. Chem. 54:24–38.
  • Palazhy, S., P. Kamath, and D. M. Vasudevan. 2015. Elevated oxidative stress among coronary artery disease patients on statin therapy: A cross sectional study. Indian Heart J. 67:227–232.
  • Park, C. M., C. W. Cho, M. E. Rosenfeld, and Y. S. Song. 2008. Methionine supplementation accelerates oxidative stress and nuclear factor kappaB activation in livers of C57BL/6 mice. J. Med. Food 11:667–674.
  • Pogribny, I. P., S. J. James, and F. A. Beland. 2012. Molecular alterations in hepatocarcinogenesis induced by dietary methyl deficiency. Mol. Nutr. Food Res. 56:116–125.
  • Rahman, I., A. Kode, and S. K. Biswas. 2006. Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat. Protoc. 1:3159–3165.
  • Reeves, P. G., F. H. Nielsen, and G. C. Fahey. 1993. Ain-93 purified diets for laboratory rodents - Final Report of the American Institute of Nutrition Ad Hoc Writing Committee on the Reformulation of the Ain-76a Rodent Diet. J. Nutr. 123:1939–1951.
  • Sharma, M., S. K. Rai, M. Tiwari, and R. Chandra. 2007. Effect of hyperhomocysteinemia on cardiovascular risk factors and initiation of atherosclerosis in Wistar rats. Eur. J. Pharmacol. 574:49–60.
  • Soyupek, F., S. Cerci, S. Yidiz, M. Yildiz, and B. Gurnus. 2007. Effect of homocysteine on bone mineral density of rats. Biol. Trace Element Res. 118:255–259.
  • Splaver, A., G. A. Lamas, and C. H. Hennekens. 2004. Homocysteine and cardiovascular disease: biological mechanisms, observational epidemiology, and the need for randomized trials. Am. Heart J. 148:34–40.
  • Tang, B., A. Mustafa, S. Gupta, S. Melnyk, S. J. James, and W. D. Kruger. 2010. Methionine-deficient diet induces post-transcriptional downregulation of cystathionine [beta]-synthase. Nutrition 26:1170–1175.
  • Targher, G., F. Marra, and G. Marchesini. 2008. Increased risk of cardiovascular disease in non-alcoholic fatty liver disease: causal effect or epiphenomenon? Diabetologia 51:1947–1953.
  • Tomaschitz, A., S. Pilz, E. Ritz, T. Grammer, K. Amrein, S. Merger, A. Meinitzer, B. R. Winkelmann, B. O. Boehm, and W. Marz. 2011. Relationship between plasma aldosterone concentration and soluble cellular adhesion molecules in patients referred to coronary angiography. Exp. Clin. Endocrinol. Diabetes 119:649–655.
  • Tyagi, N., K. C. Sedoris, M. Steed, A. V. Ovechkin, K. S. Moshal, and S. C. Tyagi. 2005. Mechanisms of homocysteine-induced oxidative stress. Am. J. Physiol. Heart Circ. Physiol. 289:H2649–H6456.
  • Van Mil, N. H., A. M. Oosterbaan, and R. P. M. Steegers-Theunissen. 2010. Teratogenicity and underlying mechanisms of homocysteine in animal models: A review. Reprod. Toxicol. 30:520–531.
  • Veeranna, V., S. K. Zalawadiya, A. Niraj, J. Pradhan, B. Ference, R. C. Burack, S. Jacob, and L. Afonso. 2011. Homocysteine and reclassification of cardiovascular disease risk. J. Am. Coll. Cardiol. 58:1025–1033.
  • Wald, D. S., N. J. Wald, J. K. Morris, and M. Law. 2006. Folic acid, homocysteine, and cardiovascular disease: judging causality in the face of inconclusive trial evidence. Br. Med. J. 333:1114–1117.
  • Wanders, D., S. Ghosh, K. P. Stone, N. T. Van, and T. W. Gettys. 2014. Transcriptional impact of dietary methionine restriction on systemic inflammation: relevance to biomarkers of metabolic disease during aging. BioFactors 40:13–26.
  • Wang, X., L. Cui, J. Joseph, B. Jiang, D. Pimental, D. E. Handy, R. Liao, and J. Loscalzo. 2012. Homocysteine induces cardiomyocyte dysfunction and apoptosis through p38 MAPK-mediated increase in oxidant stress. J. Mol. Cell. Cardiol. 52:753–760.
  • WHO. 2016. World Health Organization - Cardiovascular diseases fact sheet, Sep 2016. Accessed November 2016. http://www.who.int/mediacentre/factsheets/fs317/en/.
  • Wu, S., F. Wu, Y. Ding, J. Hou, J. Bi, and Z. Zhang. 2016. Association of non-alcoholic fatty liver disease with major adverse cardiovascular events: A systematic review and meta-analysis. Sci. Rep. 6:33386.
  • Xu, X., and J. Chen. 2009. One-carbon metabolism and breast cancer: an epidemiological perspective. J. Genet. Genom. 36:203–214.
  • YalçInkaya, S., Y. Ünlüçerçi, M. Giris, V. Olgaç, S. Dogru-Abbasoglu, and M. Uysal. 2009. Oxidative and nitrosative stress and apoptosis in the liver of rats fed on high methionine diet: protective effect of taurine. Nutrition 25:436–444.
  • Yang, M., and K. H. Vousden. 2016. Serine and one-carbon metabolism in cancer. Nat. Rev. Cancer 16:650–662.
  • Zhang, R. F., J. Ma, M. Xia, H. L. Zhu, and W. H. Ling. 2004. Mild hyperhomocysteinemia induced by feeding rats diets rich in methionine or deficient in folate promotes early atherosclerotic inflammatory processes. J. Nutr. 134:825–830.
  • Zhang, Y., J. W. Kent, 2nd, A. Lee, D. Cerjak, O. Ali, R. Diasio, M. Olivier, J. Blangero, M. A. Carless, and A. H. Kissebah. 2013. Fatty acid binding protein 3 (fabp3) is associated with insulin, lipids and cardiovascular phenotypes of the metabolic syndrome through epigenetic modifications in a Northern European family population. BMC Med. Genomics 6:9.
  • Zheng, X. Y., S. P. Zhao, and H. Yan. 2013. The role of apolipoprotein A5 in obesity and the metabolic syndrome. Biol. Rev. Cambridge Philos. Soc. 88:490–498.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.