1,611
Views
97
CrossRef citations to date
0
Altmetric
Research Article

Mechanisms of antibiotic resistance in bacteria mediated by silver nanoparticles

, , , &
Pages 1276-1289 | Received 29 Jun 2017, Accepted 04 Sep 2017, Published online: 11 Oct 2017

References

  • Andrews, J. M. 2001. Determination of minimum inhibitory concentrations. The Journal of Antimicrobial Chemotherapy 48:5–16. doi:10.1093/jac/48.suppl_1.5.
  • Avalos, A. , A. I. Haza , and P. Morales . 2015. Manufactured silver nanoparticles of different sizes induced DNA strand breaks and oxidative DNA damage in hepatoma and leukaemia cells and in dermal and pulmonary fibroblasts. Folia Biologica 61:33–42.
  • Blaser, S. A. , M. Scheringer , M. MacLeod , and K. Hungerbuhler . 2008. Estimation of cumulative aquatic exposure and risk due to silver: Contribution of nano-functionalized plastics and textiles. ScienceTotal Environment 390:396–409. doi:10.1016/j.scitotenv.2007.10.010.
  • Chen, X. , and H. J. Schluesener . 2008. Nanosilver: A nanoproduct in medical application. Toxicology Letters 176:1–12. doi:10.1016/j.toxlet.2007.10.004.
  • Chin, R. M. , X. D. Fu , M. Y. Pai , L. Vergnes , H. Hwang , G. Deng , S. Diep , B. Lomenick , V. S. Meli , G. C. Monsalve , E. Hu , S. A. Whelan , S. X. Wang , G. Jung , G. M. Solis , F. Fazlollai , C. Kaweeteerawat , A. Quach , M. Nili , A. S. Krall , H. A. Godwin , H. R. Chang , K. F. Faull , F. Guo , M. Jiang , S. A. Trauger , A. Saghatelian , D. Braas , H. R. Christofk , C. F. Clarke , M. A. Teitell , M. Petrascheck , K. Reue , M. E. Jung , A. R. Frand , and J. Huang . 2014. The metabolite alpha-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR. Nature 510:397–401.
  • Colman, B. P. , C. L. Arnaout , S. Anciaux , C. K. Gunsch , M. F. Hochella, Jr. , B. Kim , G. V. Lowry , B. M. McGill , B. C. Reinsch , C. J. Richardson , J. M. Unrine , J. P. Wright , L. Yin , and E. S. Bernhardt . 2013. Low concentrations of silver nanoparticles in biosolids cause adverse ecosystem responses under realistic field scenario. PLoS One 8:e57189. doi:10.1371/journal.pone.0057189.
  • Cupi, D. , N. B. Hartmann , and A. Baun . 2016. Influence of pH and media composition on suspension stability of silver, zinc oxide, and titanium dioxide nanoparticles and immobilization of Daphnia magna under guideline testing conditions. Ecotoxicology and Environmental Safety 127:144–152. doi:10.1016/j.ecoenv.2015.12.028.
  • Duran, N. , M. Duran , M. B. De Jesus , A. B. Seabra , W. J. Favaro , and G. Nakazato . 2016. Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity. Nanomedicine 12:789–799. doi:10.1016/j.nano.2015.11.016.
  • Durenkamp, M. , M. Pawlett , K. Ritz , J. A. Harris , A. L. Neal , and S. P. McGrath . 2016. Nanoparticles within WWTP sludges have minimal impact on leachate quality and soil microbial community structure and function. Environmental Pollution 211:399–405. doi:10.1016/j.envpol.2015.12.063.
  • Elangovan, K. , D. Elumalai , S. Anupriya , R. Shenbhagaraman , P. K. Kaleena , and K. Murugesan . 2015. Phyto mediated biogenic synthesis of silver nanoparticles using leaf extract of Andrographis echioides and its bio-efficacy on anticancer and antibacterial activities. Journal Photochemistry Photobiol., B 151:118–124. doi:10.1016/j.jphotobiol.2015.05.015.
  • European committee for antimicrobial susceptibility testing of the European Society of Clinical Microbiology and Infectious Diseases . 2007. Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clinical Microbiology and Infection 9:1–7.
  • Farah, M. A. , M. A. Ali , S. M. Chen , Y. Li , F. M. Al-Hemaid , F. M. Abou-Tarboush , K. M. Al-Anazi , and J. Lee . 2016. Silver nanoparticles synthesized from Adenium obesum leaf extract induced DNA damage, apoptosis and autophagy via generation of reactive oxygen species. Colloids Surface, B 141:158–169. doi:10.1016/j.colsurfb.2016.01.027.
  • Gagne, F. , J. Auclair , M. Fortier , A. Bruneau , M. Fournier , P. Turcotte , M. Pilote , and C. Gagnon . 2013. Bioavailability and immunotoxicity of silver nanoparticles to the freshwater mussel Elliptio complanta . Journal Toxicological Environment Health A 76:767–777. doi:10.1080/15287394.2013.818602.
  • Georgantzopoulou, A. , T. Serchi , S. Cambier , C. C. Leclercq , J. Renaut , J. Shao , M. Kruszewski , E. Lentzen , P. Grysan , S. Eswara , J. N. Audinot , S. Contal , J. Ziebel , C. Guignard , L. Hoffmann , A. J. Murk , and A. C. Gutleb . 2016. Effects of silver nanoparticles and ions on a co-culture model for the gastrointestinal epithelium. Particle Fibre Toxicological 13:1–17.
  • Graves, J. L., Jr. , M. Tajkarimi , Q. Cunningham , A. Campbell , H. Nonga , S. H. Harrison , and J. E. Barrick . 2015. Rapid evolution of silver nanoparticle resistance in Escherichia coli . Frontiers Genetics 6:1–13. doi:10.3389/fgene.2015.00042.
  • Gunawan, C. , W. Y. Teoh , C. P. Marquis , and R. Amal . 2013. Induced adaptation of Bacillus sp. to antimicrobial nanosilver. Small 9:3554–3560. doi:10.1002/smll.201300761.
  • Hachicho, N. , P. Hoffmann , K. Ahlert , and H. J. Heipieper . 2014. Effect of silver nanoparticles and silver ions on growth and adaptive response mechanisms of Pseudomonas putida mt-2. FEMS Microbiology Letters 355:71–77. doi:10.1111/fml.2014.355.issue-1.
  • Hartmann, N. B. , K. A. Jensen , A. Baun , K. Rasmussen , H. Rauscher , R. Tantra , D. Cupi , D. Gilliland , F. Pianella , and J. M. Riego Sintes . 2015. Techniques and protocols for dispersing nanoparticle powders in aqueous media-is there a rationale for marmonization? Journal Toxicological Environment Health B 18:299–326. doi:10.1080/10937404.2015.1074969.
  • Hocquet, D. , A. Muller , and X. Bertrand . 2016. What happens in hospitals does not stay in hospitals: Antibiotic-resistant bacteria in hospital wastewater systems. The Journal of Hospital Infection 93:395–402. doi:10.1016/j.jhin.2016.01.010.
  • Ivask, A. , A. Elbadawy , C. Kaweeteerawat , D. Boren , H. Fischer , Z. Ji , C. H. Chang , R. Liu , T. Tolaymat , and D. Telesca . 2014. Toxicity mechanisms in Escherichia coli vary for silver nanoparticles and differ from ionic silver. ACS Nano 8:374–386. doi:10.1021/nn4044047.
  • Ji, Z. , X. Jin , S. George , T. Xia , H. Meng , X. Wang , E. Suarez , H. Zhang , E. M. Hoek , and H. Godwin . 2010. Dispersion and stability optimization of TiO2 nanoparticles in cell culture media. Environmental Science & Technology 44:7309–7314. doi:10.1021/es100417s.
  • Joshi, N. , B. T. Ngwenya , I. B. Butler , and C. E. French . 2015. Use of bioreporters and deletion mutants reveals ionic silver and ROS to be equally important in silver nanotoxicity. Journal of Hazardous Materials 287:51–58. doi:10.1016/j.jhazmat.2014.12.066.
  • Kato, H. , K. Fujita , M. Horie , M. Suzuki , A. Nakamura , S. Endoh , Y. Yoshida , H. Iwahashi , K. Takahashi , and S. Kinugasa . 2010. Dispersion characteristics of various metal oxide secondary nanoparticles in culture medium for in vitro toxicology assessment. Toxicological In Vitro 24:1009–1018. doi:10.1016/j.tiv.2009.12.006.
  • Kaweeteerawat, C. , C. H. Chang , K. R. Roy , R. Liu , R. B. Li , D. Toso , H. Fischer , A. Ivask , Z. X. Ji , and J. I. Zink . 2015a. Cu nanoparticles have different impacts in Escherichia coli and Lactobacillus brevis than their microsized and ionic analogues. ACS Nano 9:7215–7225. doi:10.1021/acsnano.5b02021.
  • Kaweeteerawat, C. , A. Ivask , R. Liu , H. Y. Zhang , C. H. Chang , C. Low-Kam , H. Fischer , Z. X. Ji , S. Pokhrel , and Y. Cohen . 2015b. Toxicity of metal oxide nanoparticles in Escherichia coli correlates with conduction band and hydration energies. Environmental Science & Technology 49:1105–1112. doi:10.1021/es504259s.
  • Kermanizadeh, A. , I. Gosens , L. MacCalman , H. Johnston , P. H. Danielsen , N. R. Jacobsen , A. G. Lenz , T. Fernandes , R. P. Schins , F. R. Cassee , H. Wain , W. Kreyling , T. Stoeger , S. Loft , P. Moller , L. Tran , and V. Stone . 2016. A multilaboratory toxicological assessment of a panel of 10 engineered nanomaterials to human health–ENPRA Project–The highlights, limitations, and current and future challenges. Journal Toxicological Environment Health B 19:1–28. doi:10.1080/10937404.2015.1126210.
  • Kim, J. S. , E. Kuk , K. N. Yu , J. H. Kim , S. J. Park , H. J. Lee , S. H. Kim , Y. K. Park , Y. H. Park , and C. Y. Hwang . 2007. Antimicrobial effects of silver nanoparticles. Nanomedicine 3:95–101. doi:10.1016/j.nano.2006.12.001.
  • Lee, W. , K. J. Kim , and D. G. Lee . 2014. A novel mechanism for the antibacterial effect of silver nanoparticles on Escherichia coli . BioMetals 27:1191–1201. doi:10.1007/s10534-014-9782-z.
  • Li, Y. , D. H. Chen , J. Yan , Y. Chen , R. A. Mittelstaedt , Y. B. Zhang , A. S. Biris , R. H. Heflich , and T. Chen . 2012. Genotoxicity of silver nanoparticles evaluated using the Ames test and in vitro micronucleus assay. Mutat Res., Genetics Toxicological Environment Mutagen 745:4–10. doi:10.1016/j.mrgentox.2011.11.010.
  • Liu, Y. , Q. Xia , Y. Liu , S. Zhang , F. Cheng , Z. Zhong , L. Wang , H. Li , and K. Xiao . 2014. Genotoxicity assessment of magnetic iron oxide nanoparticles with different particle sizes and surface coatings. Nanotechnology 25:425101. doi:10.1088/0957-4484/25/42/425101.
  • Lok, C. N. , C. M. Ho , R. Chen , Q. Y. He , W. Y. Yu , H. Sun , P. K. Tam , J. F. Chiu , and C. M. Che . 2006. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. Journal of Proteome Research 5:916–924. doi:10.1021/pr0504079.
  • Loo, S. L. , W. B. Krantz , X. Hu , A. G. Fane , and T. T. Lim . 2016. Impact of solution chemistry on the properties and bactericidal activity of silver nanoparticles decorated on superabsorbent cryogels. Journal Colloid Interface Sciences 461:104–113. doi:10.1016/j.jcis.2015.09.007.
  • Massarsky, A. , V. L. Trudeau , and T. W. Moon . 2014. Predicting the environmental impact of nanosilver. Environmental Toxicology and Pharmacology 38:861–873. doi:10.1016/j.etap.2014.10.006.
  • McGillicuddy, E. , I. Murray , S. Kavanagh , L. Morrison , A. Fogarty , M. Cormican , P. Dockery , M. Prendergast , N. Rowan , and D. Morris . 2017. Silver nanoparticles in the environment: Sources, detection and ecotoxicology. The Science of the Total Environment 575:231–246. doi:10.1016/j.scitotenv.2016.10.041.
  • McQuillan, J. S. , and A. M. Shaw . 2014. Differential gene regulation in the Ag nanoparticle and Ag+-induced silver stress response in Escherichia coli: A full transcriptomic profile. Nanotoxicology 8:177–184. doi:10.3109/17435390.2013.870243.
  • Mercier-Bonin, M. , B. Despax , P. Raynaud , E. Houdeau , and M. Thomas . 2016. Mucus and microbiota as emerging players in gut nanotoxicology: The example of dietary silver and titanium dioxide nanoparticles. Critical Reviews Food Sciences Nutritional 1–10. doi:10.1080/10408398.2016.1243088.
  • Niazi, J. H. , B. I. Sang , Y. S. Kim , and M. B. Gu . 2011. Global gene response in Saccharomyces cerevisiae exposed to silver nanoparticles. Applied Biochemistry and Biotechnology 164:1278–1291. doi:10.1007/s12010-011-9212-4.
  • Nohmi, T. 2006. Environmental stress and lesion-bypass DNA polymerases. Annual Review of Microbiology 60:231–253. doi:10.1146/annurev.micro.60.080805.142238.
  • OECD . 1997. OECD guidelines for the testing of chemicals. Section 4: Health effects. Test No. 471. Bacterial Reverse Mutation Test
  • Ofek, I. , E. H. Beachey , B. I. Eisenstein , M. L. Alkan , and N. Sharon . 1979. Suppression of bacterial adherence by subminimal inhibitory concentrations of beta-lactam and aminoglycoside antibiotics. Reviews of Infectious Diseases 1:832–837. doi:10.1093/clinids/1.5.832.
  • Ong, C. , Q. Y. Lee , Y. Cai , X. Liu , J. Ding , L. Y. Yung , B. H. Bay , and G. H. Baeg . 2016. Silver nanoparticles disrupt germline stem cell maintenance in the Drosophila testis. Sciences Reports 6:1–10. doi:10.1038/srep20632.
  • Quadros, M. E. , and L. C. Marr . 2010. Environmental and human health risks of aerosolized silver nanoparticles. Journal of Air Waste Manage Association 60:770–781. doi:10.3155/1047-3289.60.7.770.
  • Ramalingam, B. , T. Parandhaman , and S. K. Das . 2016. Antibacterial effects of biosynthesized silver nanoparticles on surface ultrastructure and nanomechanical properties of gram-negative bacteria viz. Escherichia coli and Pseudomonas aeruginosa . ACS Applications Materials Interfaces 8:4963–4976.
  • Roman, M. , C. Rigo , H. Castillo-Michel , I. Munivrana , V. Vindigni , I. Micetic , F. Benetti , L. Manodori , and W. R. Cairns . 2016. Hydrodynamic chromatography coupled to single-particle ICP-MS for the simultaneous characterization of AgNPs and determination of dissolved Ag in plasma and blood of burn patients. Analysis Bioanalytical Chemical 408:5109–5124. doi:10.1007/s00216-015-9014-6.
  • Romero-Urbina, D. G. , H. H. Lara , J. J. Velazquez-Salazar , M. J. Arellano-Jimenez , E. Larios , A. Srinivasan , J. L. Lopez-Ribot , and M. J. Yacaman . 2015. Ultrastructural changes in methicillin-resistant Staphylococcus aureus induced by positively charged silver nanoparticles. Beilstein Journal Nanotechnol 6:2396–2405. doi:10.3762/bjnano.6.246.
  • Sangappa, M. , and P. Thiagarajan . 2015. Combating drug resistant pathogenic bacteria isolated from clinical infections, with silver oxide nanoparticles. Indian Journal Pharmaceutical Sciences 77:151–155. doi:10.4103/0250-474X.156546.
  • Sendi, P. , M. Furitsch , S. Mauerer , C. Florindo , B. C. Kahl , S. Shabayek , R. Berner , and B. Spellerberg . 2016. Chromosomally and extrachromosomally mediated high-level gentamicin resistance in Streptococcus agalactiae . Antimicrobial Agents and Chemotherapy 60:1702–1707. doi:10.1128/AAC.01933-15.
  • Shannahan, J. H. , R. Podila , A. A. Aldossari , H. Emerson , B. A. Powell , P. C. Ke , A. M. Rao , and J. M. Brown . 2015. Formation of a protein corona on silver nanoparticles mediates cellular toxicity via scavenger receptors. Toxicological Sciences 143:136–146. doi:10.1093/toxsci/kfu217.
  • Smekalova, M. , V. Aragon , A. Panacek , R. Prucek , R. Zboril , and L. Kvitek . 2016. Enhanced antibacterial effect of antibiotics in combination with silver nanoparticles against animal pathogens. Veterinary Journal 209:174–179. doi:10.1016/j.tvjl.2015.10.032.
  • Soni, D. , P. K. Naoghare , S. Saravanadevi , and R. A. Pandey . 2015. Release, transport and toxicity of engineered nanoparticles. Reviews Environment ContamToxicol 234:1–47.
  • Taylor, A. A. , and S. L. Walker . 2016. Effects of copper particles on a model septic system’s function and microbial community. Water Research 91:350–360. doi:10.1016/j.watres.2016.01.014.
  • Von Wintersdorff, C. J. , J. Penders , J. M. Van Niekerk , N. D. Mills , S. Majumder , L. B. Van Alphen , P. H. Savelkoul , and P. F. Wolffs . 2016. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Frontiers Microbiologic 7:1–10. doi:10.3389/fmicb.2016.00173.
  • Wei, L. , J. Lu , H. Xu , A. Patel , Z. S. Chen , and G. Chen . 2015. Silver nanoparticles: Synthesis, properties, and therapeutic applications. Drug Discovery Today 20:595–601. doi:10.1016/j.drudis.2014.11.014.
  • Xiu, Z. M. , Y. Y. Liu , J. Mathieu , J. Wang , D. Q. Zhu , and P. J. J. Alvarez . 2014. Elucidating the genetic basis for Escherichia coli defense against silver toxicity using mutant arrays. Environmental Toxicology and Chemistry 33:993–997. doi:10.1002/etc.2514.
  • Yang, Y. , J. M. Mathieu , S. Chattopadhyay , J. T. Miller , T. Wu , T. Shibata , W. Guo , and P. J. Alvarez . 2012. Defense mechanisms of Pseudomonas aeruginosa PAO1 against quantum dots and their released heavy metals. ACS Nano 6:6091–6098. doi:10.1021/nn3011619.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.