396
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Learning, memory deficits, and impaired neuronal maturation attributed to acrylamide

, , , , , , , , , & show all
Pages 254-265 | Received 30 Nov 2017, Accepted 06 Jan 2018, Published online: 23 Feb 2018

References

  • Al-Gholam, M. A., H. Z. Nooh, A. E. El-Mehi, M. El-Barbary Ael, and A. Z. Fokar. 2016. Protective effect of rosemary on acrylamide motor neurotoxicity in spinal cord of rat offspring: Postnatal follow-up study. Anatomy & Cell Biology 49:34–49. doi:10.5115/acb.2016.49.1.34.
  • Ali, S. F., J. S. Hong, W. E. Wilson, L. L. Uphouse, and S. C. Bondy. 1983. Effect of acrylamide on neurotransmitter metabolism and neuropeptide levels in several brain regions and upon circulating hormones. Archives of Toxicology 52:35–43. doi:10.1007/BF00317980.
  • Attoff, K., D. Kertika, J. Lundqvist, S. Oredsson, and A. Forsby. 2016. Acrylamide affects proliferation and differentiation of the neural progenitor cell line C17.2 and the neuroblastoma cell line SH-SY5Y. Toxicology in Vitro 35:100–111. doi:10.1016/j.tiv.2016.05.014.
  • Azhary, H., M. U. Farooq, M. Bhanushali, A. Majid, and M. Y. Kassab. 2010. Peripheral neuropathy: Differential diagnosis and management. American Academy of Family Physicians 81:887–892.
  • Besaratinia, A., and G. P. Pfeifer. 2003. Weak yet distinct mutagenicity of acrylamide in mammalian cells. Journal of the National Cancer Institute 95:889–896. doi:10.1093/jnci/95.12.889.
  • Besaratinia, A., and G. P. Pfeifer. 2005. DNA adduction and mutagenic properties of acrylamide. Mutation Research 580:31–40. doi:10.1016/j.mrgentox.2004.10.011.
  • Bull, R. J., M. Robinson, R. D. Laurie, G. D. Stoner, E. Greisiger, J. R. Meier, and J. Stober. 1984. Carcinogenic effects of acrylamide in Sencar and A/J mice. Cancer Research 44:107–111.
  • Chambers, J. S., D. Thomas, L. Saland, R. L. Neve, and N. I. Perrone-Bizzozero. 2005. Growth-associated protein 43 (GAP-43) and synaptophysin alterations in the dentate gyrus of patients with schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry 29:283–290. doi:10.1016/j.pnpbp.2004.11.013.
  • Chen, J. H., and C. C. Chou. 2015. Acrylamide inhibits cellular differentiation of human neuroblastoma and glioblastoma cells. Food and Chemical Toxicology 82:27–35. doi:10.1016/j.fct.2015.04.030.
  • Chen, J. H., C. H. Yang, Y. S. Wang, J. G. Lee, C. H. Cheng, and C. C. Chou. 2013. Acrylamide-induced mitochondria collapse and apoptosis in human astrocytoma cells. Food and Chemical Toxicology 51:446–452. doi:10.1016/j.fct.2012.10.025.
  • Dearfield, K. L., G. R. Douglas, U. H. Ehling, M. M. Moore, G. A. Sega, and D. J. Brusick. 1995. Acrylamide: A review of its genotoxicity and an assessment of heritable genetic risk. Mutation Research 330:71–99. doi:10.1016/0027-5107(95)00037-J.
  • Del Olmo, N., A. Higuera-Matas, M. Miguens, C. Garcia-Lecumberri, E. Borcel, J. M. Solis, and E. Ambrosio. 2006. Hippocampal synaptic plasticity and water maze learning in cocaine self-administered rats. Annals of the New York Academy of Sciences 1074:427–437. doi:10.1196/annals.1369.043.
  • Ehrenberg, B., V. Montana, M. D. Wei, J. P. Wuskell, and L. M. Loew. 1988. Membrane potential can be determined in individual cells from the nernstian distribution of cationic dyes. Biophysical Journal 53:785–794. doi:10.1016/S0006-3495(88)83158-8.
  • Exon, J. H. 2006. A review of the toxicology of acrylamide. Journal Toxicogical Environment Health B 9:397–412. doi:10.1080/10937400600681430.
  • Fernandes, L. S., N. A. G. Dos Santos, G. L. Emerick, and A. C. D. Santos. 2017. L- and T-type calcium channel blockers protect against the inhibitory effects of mipafox on neurite outgrowth and plasticity-related proteins in SH-SY5Y cells. Journal of Toxicology and Environmental Health. Part A 80:1086–1097. doi:10.1080/15287394.2017.1357359.
  • Harada, A., J. Teng, Y. Takei, K. Oguchi, and N. Hirokawa. 2002. MAP2 is required for dendrite elongation, PKA anchoring in dendrites, and proper PKA signal transduction. The Journal of Cell Biology 158:541–549. doi:10.1083/jcb.200110134.
  • He, Y., D. Tan, Y. Mi, B. Bai, D. Jiang, X. Zhou, and S. Ji. 2017. Effect of epigallocatechin-3-gallate on acrylamide-induced oxidative stress and apoptosis in PC12 cells. Human & Experimental Toxicology 36:1087–1099. doi:10.1177/0960327116681648.
  • Husain, R., R. Dixit, M. Das, and P. K. Seth. 1987. Neurotoxicity of acrylamide in developing rat brain: Changes in the levels of brain biogenic amines and activities of monoamine oxidase and acetylcholine esterase. Industrial Health 25:19–28. doi:10.2486/indhealth.25.19.
  • Jahn, R., W. Schiebler, C. Ouimet, and P. Greengard. 1985. A 38,000-dalton membrane protein (p38) present in synaptic vesicles. Proceedings of the National Academy of Sciences of the United States of America 82:4137–4141. doi:10.1073/pnas.82.12.4137.
  • Jia, J. X., X. S. Yan, Z. P. Cai, W. Song, D. S. Huo, B. F. Zhang, H. Wang, and Z. J. Yang. 2017. The effects of phenylethanoid glycosides, derived from Herba cistanche, on cognitive deficits and antioxidant activities in male SAMP8 mice. Journal of Toxicology and Environmental Health. Part A 80:1180–1186. doi:10.1080/15287394.2017.1367097.
  • Kim, H., S. G. Lee, and J. Rhie. 2017. Dermal and neural toxicity caused by acrylamide exposure in two Korean grouting workers: A case report. Annals of Occupational and Environmental Medicine 29:50. doi:10.1186/s40557-017-0207-7.
  • Korzhevskii, D. E., M. N. Karpenko, and O. V. Kirik. 2011. Microtubule-associated proteins as markers of nerve cell differentiation and functional status. Morfologiia 139:13–21.
  • Krugers, H. J., S. Maslam, J. Korf, M. Joels, and F. Holsboer. 2000. The corticosterone synthesis inhibitor metyrapone prevents hypoxia/ischemia-induced loss of synaptic function in the rat hippocampus. Stroke 31:1162–1172. doi:10.1161/01.STR.31.5.1162.
  • Lee, H. R., S. J. Cho, H. J. Park, K. H. Kim, D. K. Rhee, and S. Pyo. 2010. The inhibitory effect of acrylamide on NCAM expression in human neuroblastoma cells: Involvement of CK2/Ikaros signaling pathway. Toxicology in Vitro 24:1946–1952. doi:10.1016/j.tiv.2010.08.004.
  • Lee, J. W., K. B. Serrogy, and M. P. Mattson. 2002. Dietary restriction enhances neurotrophin expression and neurogenesis in the hippocampus of adult mice. Journal of Neurochemistry 80:539–547. doi:10.1046/j.0022-3042.2001.00747.x.
  • Lee, S. B., J. H. Kim, M. H. Cho, E. S. Choe, K. S. Kim, and S. M. Shim. 2017. Impact of commercial cigarette smoke condensate on brain tissue co-cultured with astrocytes and blood-brain barrier endothelial cells. Journal of Toxicology and Environmental Health. Part A 80:533–541. doi:10.1080/15287394.2017.1355863.
  • Liu, Z., G. Song, C. Zou, G. Liu, W. Wu, T. Yuan, and X. Liu. 2015. Acrylamide induces mitochondrial dysfunction and apoptosis in BV-2 microglial cells. Free Radical Biology & Medicine 84:42–53. doi:10.1016/j.freeradbiomed.2015.03.013.
  • Lopachin, R. M., and T. Gavin. 2008. Acrylamide-induced nerve terminal damage: Relevance to neurotoxic and neurodegenerative mechanisms. Journal of Agricultural and Food Chemistry 56:5994–6003. doi:10.1021/jf703745t.
  • Meyer, J. N., M. C. Leung, J. P. Rooney, A. Sendoel, M. O. Hengartner, G. E. Kisby, and A. S. Bess. 2013. Mitochondria as a target of environmental toxicants. Toxicological Sciences 134:1–17. doi:10.1093/toxsci/kft102.
  • Miller, M. S., and P. S. Spencer. 1985. The mechanisms of acrylamide axonopathy. Annual Review of Pharmacology and Toxicology 25:643–666. doi:10.1146/annurev.pa.25.040185.003235.
  • Mojska, H., I. Gielecinska, L. Szponar, and M. Oltarzewski. 2010. Estimation of the dietary acrylamide exposure of the Polish population. Food and Chemical Toxicology 48:2090–2096. doi:10.1016/j.fct.2010.05.009.
  • Mottram, D. S., B. L. Wedzicha, and A. T. Dodson. 2002. Acrylamide is formed in the Maillard reaction. Nature 419:448–449. doi:10.1038/419448a.
  • Ogawa, B., L. Wang, T. Ohishi, E. Taniai, H. Akane, K. Suzuki, K. Mitsumori, and M. Shibutani. 2012. Reversible aberration of neurogenesis targeting late-stage progenitor cells in the hippocampal dentate gyrus of rat offspring after maternal exposure to acrylamide. Archives of Toxicology 86:779–790. doi:10.1007/s00204-012-0801-y.
  • Park, H. R., M. S. Kim, S. J. Kim, M. Park, K. H. Kong, H. S. Kim, S. J. Kwack, T. S. Kang, S. H. Kim, H. S. Kim, and J. Lee. 2010. Acrylamide induces cell death in neural progenitor cells and impairs hippocampal neurogenesis. Toxicology Letters 193:86–93. doi:10.1016/j.toxlet.2009.12.015.
  • Peterson, C., J. H. Neal, and C. W. Cotman. 1989. Development of N-methyl-D-aspartate excitotoxicity in cultured hippocampal neurons. Brain Research Developmental Brain Research 48:187–195. doi:10.1016/0165-3806(89)90075-8.
  • Sailor, K. A., A. F. Schinder, and P. M. Lledo. 2017. Adult neurogenesis beyond the niche: Its potential for driving brain plasticity. Current Opinion in Neurobiology 42:111–117. doi:10.1016/j.conb.2016.12.001.
  • Santra, M., X. S. Liu, S. Santra, J. Zhang, R. L. Zhang, Z. G. Zhang, and M. Chopp. 2006. Ectopic expression of doublecortin protects adult rat progenitor cells and human glioma cells from severe oxygen and glucose deprivation. Neuroscience 142:739–752. doi:10.1016/j.neuroscience.2006.06.065.
  • Sarma, S. N., J. M. Blais, and H. M. Chan. 2017. Neurotoxicity of alkylated polycyclic aromatic compounds in human neuroblastoma cells. Journal of Toxicology and Environmental Health, Part A 80:285–300. doi:10.1080/15287394.2017.1314840.
  • Seale, S. M., Q. Feng, A. K. Agarwal, and A. T. El-Alfy. 2012. Neurobehavioral and transcriptional effects of acrylamide in juvenile rats. Pharmacology, Biochemistry, and Behavior 101:77–84. doi:10.1016/j.pbb.2011.12.006.
  • Shipp, A., G. Lawrence, R. Gentry, T. McDonald, H. Bartow, J. Bounds, N. Macdonald, H. Clewell, B. Allen, and C. Van Landingham. 2006. Acrylamide: Review of toxicity data and dose-response analyses for cancer and noncancer effects. Critical Reviews in Toxicology 36:481–608.
  • Shukitt-Hale, B., A. N. Carey, D. Jenkins, B. M. Rabin, and J. A. Joseph. 2007. Beneficial effects of fruit extracts on neuronal function and behavior in a rodent model of accelerated aging. Neurobiology of Aging 28:1187–1194. doi:10.1016/j.neurobiolaging.2006.05.031.
  • Sisnaiske, J., V. Hausherr, A. K. Krug, B. Zimmer, J. G. Hengstler, M. Leist, and C. Van Thriel. 2014. Acrylamide alters neurotransmitter induced calcium responses in murine ESC-derived and primary neurons. Neurotoxicology 43:117–126. doi:10.1016/j.neuro.2014.03.010.
  • Snipes, G. J., S. Y. Chan, C. B. McGuire, B. R. Costello, J. J. Norden, J. A. Freeman, and A. Routtenberg. 1987. Evidence for the coidentification of GAP-43, a growth-associated protein, and F1, a plasticity-associated protein. The Journal of Neuroscience 7:4066–4075.
  • Sumner, S. C., C. C. Williams, R. W. Snyder, W. L. Krol, B. Asqharian, and T. R. Fennell. 2003. Acrylamide: A comparison of metabolism and hemoglobin adducts in rodents following dermal, intraperitoneal, oral, or inhalation exposure. Toxicological Sciences 75:260–270. doi:10.1093/toxsci/kfg191.
  • Syberg, K., M. L. Binderup, N. Cedergreen, and J. Rank. 2015. Mixture genotoxicity of 2,4-dichlorophenoxyacetic acid, acrylamide, and maleic hydrazide on human Caco-2 cells assessed with comet assay. Journal of Toxicology and Environmental Health, Part A 78:369–380. doi:10.1080/15287394.2014.983626.
  • Tian, S. M., Y. X. Ma, J. Shi, T. Y. Lou, S. S. Liu, and G. Y. Li. 2015. Acrylamide neurotoxicity on the cerebrum of weaning rats. Neural Regeneration Researcher 10:938–943. doi:10.4103/1673-5374.158357.
  • VanGuilder, H. D., J. A. Farley, H. Yan, C. A. Van Kirk, M. Mitschelen, W. E. Sonntag, and W. M. Freeman. 2011. Hippocampal dysregulation of synaptic plasticity-associated proteins with age-related cognitive decline. Neurobiology of Disease 43:201–212. doi:10.1016/j.nbd.2011.03.012.
  • Wang, H., P. Huang, T. Lie, J. Li, R. J. Hutz, K. Li, and F. Shi. 2010. Reproductive toxicity of acrylamide-treated male rats. Reproductive Toxicology 29:225–230. doi:10.1016/j.reprotox.2009.11.002.
  • Webster, M. J., C. Shannon Weickert, M. M. Herman, T. M. Hyde, and J. E. Kleinman. 2001. Synaptophysin and GAP-43 mRNA levels in the hippocampus of subjects with schizophrenia. Schizophrenia Research 49:89–98. doi:10.1016/S0920-9964(00)00052-9.
  • Yuan, Y., C. Jiang, F. Hu, Q. Wang, K. Zhang, Y. Wang, J. Gu, X. Liu, J. Bian, and Z. Liu. 2015. The role of mitogen-activated protein kinase in cadmium-induced primary rat cerebral cortical neurons apoptosis via a mitochondrial apoptotic pathway. Journal of Trace Elements in Medicine and Biology 29:275–283. doi:10.1016/j.jtemb.2014.06.006.
  • Zhang, B., H. Shao, X. H. Wang, X. Chen, Z. S. Li, P. Cao, D. Zhu, Y. G. Yang, J. W. Xiao, and B. Li. 2017a. Acrylamide-induced subacute neurotoxic effects on the cerebral cortex and cerebellum at the synapse level in rats. Biomedical and Environmental Sciences 30:432–443.
  • Zhang, M., H. X. Zheng, Y. Y. Gao, B. Zheng, J. P. Liu, H. Wang, Z. J. Yang, and Z. Y. Zhao. 2017b. The influence of Schisandrin B on a model of Alzheimer’s disease using beta-amyloid protein Abeta1-42-mediated damage in SH-SY5Y neuronal cell line and underlying mechanisms. Journal of Toxicology and Environmental Health. Part A 80:1199–1205. doi:10.1080/15287394.2017.1367133.
  • Zhao, C., W. Deng, and F. H. Gage. 2008. Mechanisms and functional implications of adult neurogenesis. Cell 132:645–660. doi:10.1016/j.cell.2008.01.033.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.