301
Views
12
CrossRef citations to date
0
Altmetric
Articles

Melatonin attenuates expression of cyclooxygenase-2 (COX-2) in activated microglia induced by lipopolysaccharide (LPS)

, , , , , , , , , & show all

References

  • Aparicio-Soto, M., C. Alarcon-de-la-Lastra, A. Cardeno, S. Sanchez-Fidalgo, and M. Sanchez-Hidalgo. 2014. Melatonin modulates microsomal PGE synthase 1 and NF-E2-related factor-2-regulated antioxidant enzyme expression in LPS-induced murine peritoneal macrophages. Br. J. Pharmacol. 171:134–44. doi:10.1111/bph.12428.
  • Berkiks, I., H. Benmhammed, A. Mesfioui, A. Ouichou, A. El Hasnaoui, S. Mouden, T. Touil, Y. Bahbiti, R. Nakache, and A. El Hessni. 2018. Postnatal melatonin treatment protects against affective disorders induced by early-life immune stimulation by reducing the microglia cell activation and oxidative stress. Int. J. Neurosci. 128:495–504. doi:10.1080/00207454.2017.1398156.
  • Bu, L. J., H. Q. Yu, L. L. Fan, X. Q. Li, F. Wang, J. T. Liu, F. Zhong, C. J. Zhang, W. Wei, H. Wang, et al. 2017. Melatonin, a novel selective ATF-6 inhibitor, induces human hepatoma cell apoptosis through COX-2 downregulation. World J. Gastroenterol. 23:986–98. doi:10.3748/wjg.v23.i6.986.
  • Calvo, J. R., C. Gonzalez-Yanes, and M. D. Maldonado. 2013. The role of melatonin in the cells of the innate immunity: A review. J. Pineal Res. 55:103–20. doi:10.1111/jpi.12075.
  • Carloni, S., G. Favrais, E. Saliba, M. C. Albertini, S. Chalon, M. Longini, P. Gressens, G. Buonocore, and W. Balduini. 2016. Melatonin modulates neonatal brain inflammation through endoplasmic reticulum stress, autophagy, and miR-34a/silent information regulator 1 pathway. J. Pineal Res. 61:370–80. doi:10.1111/jpi.12354.
  • Colonna, M., and O. Butovsky. 2017. Microglia function in the central nervous system during health and neurodegeneration. Annu. Rev. Immunol. 35:441–68. doi:10.1146/annurev-immunol-051116-052358.
  • Deng, W. G., S. T. Tang, H. P. Tseng, and K. K. Wu. 2006. Melatonin suppresses macrophage cyclooxygenase-2 and inducible nitric oxide synthase expression by inhibiting p52 acetylation and binding. Blood 108:518–24. doi:10.1182/blood-2005-09-3691.
  • DiDonato, J. A., F. Mercurio, and M. Karin. 2012. NF-kappaB and the link between inflammation and cancer. Immunol. Rev. 246:379–400. doi:10.1111/j.1600-065X.2012.01099.x.
  • Doens, D., and P. L. Fernandez. 2014. Microglia receptors and their implications in the response to amyloid beta for Alzheimer’s disease pathogenesis. J. Neuroinflammation 11:48. doi:10.1186/s12974-014-0139-x.
  • Dominguez Rubio, A. P., F. Correa, J. Aisemberg, D. Dorfman, M. V. Bariani, R. E. Rosenstein, M. Zorrilla Zubilete, and A. M. Franchi. 2017. Maternal administration of melatonin exerts short- and long-term neuroprotective effects on the offspring from lipopolysaccharide-treated mice. J. Pineal Res. 63:e12439.
  • Dong, W. G., Q. Mei, J. P. Yu, J. M. Xu, L. Xiang, and Y. Xu. 2003. Effects of melatonin on the expression of iNOS and COX-2 in rat models of colitis. World J. Gastroenterol. 9:1307–11. doi:10.3748/wjg.v9.i6.1307.
  • Dutta, G., P. Zhang, and B. Liu. 2008. The lipopolysaccharide Parkinson’s disease animal model: Mechanistic studies and drug discovery. Fundam Clin. Pharmacol. 22:453–64. doi:10.1111/j.1472-8206.2008.00616.x.
  • Foucault-Fruchard, L., and D. Antier. 2017. Therapeutic potential of alpha7 nicotinic receptor agonists to regulate neuroinflammation in neurodegenerative diseases. Neural Regen Res. 12:1418–21. doi:10.4103/1673-5374.215244.
  • Giovannini, M. G., C. Scali, C. Prosperi, A. Bellucci, G. Pepeu, and F. Casamenti. 2003. Experimental brain inflammation and neurodegeneration as model of Alzheimer’s disease: Protective effects of selective COX-2 inhibitors. Int. J. Immunopathol. Pharmacol. 16:31–40.
  • Guo, C., L. Yang, C. X. Wan, Y. Z. Xia, C. Zhang, M. H. Chen, Z. D. Wang, Z. R. Li, X. M. Li, Y. D. Geng, et al. 2016. Anti-neuroinflammatory effect of Sophoraflavanone G from Sophora alopecuroides in LPS-activated BV2 microglia by MAPK, JAK/STAT and Nrf2/HO-1 signaling pathways. Phytomedicine 23:1629–37. doi:10.1016/j.phymed.2016.10.007.
  • Han, J., C. Ji, Y. Guo, R. Yan, T. Hong, Y. Dou, Y. An, S. Tao, F. Qin, J. Nie, et al. 2017. Mechanisms underlying melatonin-mediated prevention of fenvalerate-induced behavioral and oxidative toxicity in zebrafish. J. Toxicol. Environ. Health Part A 80:1331–41. doi:10.1080/15287394.2017.1384167.
  • Hanisch, U. K., and H. Kettenmann. 2007. Microglia: Active sensor and versatile effector cells in the normal and pathologic brain. Nat. Neurosci. 10:1387–94. doi:10.1038/nn1997.
  • Huo, D. S., J. F. Sun, B. Zhang, X. S. Yan, H. Wang, J. X. Jia, and Z. J. Yang. 2016. Protective effects of testosterone on cognitive dysfunction in Alzheimer’s disease model rats induced by oligomeric beta amyloid peptide 1-42. J. Toxicol. Environ. Health Part A 79:856–63. doi:10.1080/15287394.2016.1193114.
  • Ji, A., H. Diao, X. Wang, R. Yang, J. Zhang, W. Luo, R. Cao, Z. Cao, F. Wang, and T. Cai. 2012. n-3 polyunsaturated fatty acids inhibit lipopolysaccharide-induced microglial activation and dopaminergic injury in rats. Neurotoxicology 33:780–88. doi:10.1016/j.neuro.2012.02.018.
  • Jia, J. X., X. S. Yan, W. Song, X. Fang, Z. P. Cai, D. S. Huo, H. Wang, and Z. J. Yang. 2018. The protective mechanism underlying phenylethanoid glycosides (PHG) actions on synaptic plasticity in rat Alzheimer’s disease model induced by beta amyloid 1-42. J. Toxicol. Environ. Health Part A 81:1098–107. doi:10.1080/15287394.2018.1501861.
  • Jiang, T., Q. Chang, J. Cai, J. Fan, X. Zhang, and G. Xu. 2016. Protective effects of melatonin on retinal inflammation and oxidative stress in experimental diabetic retinopathy. Oxid Med. Cell. Longev 2016:1–13. doi:10.1155/2016/3528274.
  • Kim, D. C., T. H. Quang, H. Oh, and Y. C. Kim. 2017. Steppogenin isolated from Cudrania tricuspidata shows antineuroinflammatory effects via NF-kappaB and MAPK pathways in LPS-stimulated BV2 and primary rat microglial cells. Molecules 22. doi: 10.3390/molecules22122130.
  • Kim, E. K., and E. J. Choi. 2015. Compromised MAPK signaling in human diseases: An update. Arch. Toxicol. 89:867–82. doi:10.1007/s00204-015-1472-2.
  • Kubatka, P., P. Zubor, D. Busselberg, T. K. Kwon, M. Adamek, D. Petrovic, R. Opatrilova, K. Gazdikova, M. Caprnda, L. Rodrigo, et al. 2018. Melatonin and breast cancer: Evidences from preclinical and human studies. Crit. Rev. Oncol. Hematol. 122:133–43. doi:10.1016/j.critrevonc.2017.12.018.
  • Kuthati, Y., S. H. Lin, I. J. Chen, and C. S. Wong. 2018. Melatonin and their analogs as a potential use in the management of neuropathic pain. J. Formos Med. Assoc. doi:10.1016/j.jfma.2018.09.017.
  • Li, J., and W. Le. 2013. Modeling neurodegenerative diseases. Caenorhabditis elegans. Exp. Neurol. 250:94–103. doi:10.1016/j.expneurol.2013.09.024.
  • Liu, M. C., X. Q. Liu, W. Wang, X. F. Shen, H. L. Che, Y. Y. Guo, M. G. Zhao, J. Y. Chen, and W. J. Luo. 2012. Involvement of microglia activation in the lead induced long-term potentiation impairment. PLoS ONE 7:e43924. doi:10.1371/journal.pone.0043924.
  • Liu, Y., M. Li, Z. Zhang, Y. Ye, and J. Zhou. 2018b. Role of microglia-neuron interactions in diabetic encephalopathy. Ageing Res. Rev. 42:28–39. doi:10.1016/j.arr.2017.12.005.
  • Liu, Z., L. Gan, T. Zhang, Q. Ren, and C. Sun. 2018a. Melatonin alleviates adipose inflammation through elevating alpha-ketoglutarate and diverting adipose-derived exosomes to macrophages in mice. J. Pineal Res. 64:e12455.
  • Mauriz, J. L., P. S. Collado, C. Veneroso, R. J. Reiter, and J. Gonzalez-Gallego. 2013. A review of the molecular aspects of melatonin’s anti-inflammatory actions: Recent insights and new perspectives. J. Pineal Res. 54:1–14. doi:10.1111/j.1600-079X.2012.01014.x.
  • Mayeux, P. B. 1997. Pathobiology of lipopolysaccharide. J. Toxicol. Environ. Health 51:415–35. doi:10.1080/00984109708984034.
  • Muhammad, T., T. Ali, M. Ikram, A. Khan, S. I. Alam, and M. O. Kim. 2018. Melatonin rescue oxidative stress-mediated neuroinflammation/neurodegeneration and memory impairment in scopolamine-induced amnesia mice model. J. Neuroimmune. Pharmacol. doi:10.1007/s11481-018-9824-3.
  • Ni, M., X. Li, J. B. Rocha, M. Farina, and M. Aschner. 2012. Glia and methylmercury neurotoxicity. J. Toxicol. Environ. Health Part A 75:1091–101. doi:10.1080/15287394.2012.697840.
  • Osier, N., E. McGreevy, L. Pham, A. Puccio, D. Ren, Y. P. Conley, S. Alexander, and C. E. Dixon. 2018. Melatonin as a therapy for traumatic brain injury: A review of published evidence. Int. J. Mol. Sci. 19. doi: 10.3390/ijms19051539.
  • Porter, D. W., M. Wolfarth, S. H. Young, M. K. Rao, T. Meighan, M. Barger, M. E. Andrew, and L. J. Huffman. 2007. PGJ2 inhibition of LPS-induced inflammatory mediator expression from rat alveolar macrophages. J. Toxicol. Environ. Health Part A 70:1967–76. doi:10.1080/15287390701549260.
  • Ransohoff, R. M., and M. A. Brown. 2012. Innate immunity in the central nervous system. J. Clin. Invest. 122:1164–71. doi:10.1172/JCI58644.
  • Ransohoff, R. M., and J. El Khoury. 2015. Microglia in health and disease. Cold Spring Harb. Perspect Biol. 8:a020560. doi:10.1101/cshperspect.a020560.
  • Rasheed, Z., and T. M. Haqqi. 2012. Endoplasmic reticulum stress induces the expression of COX-2 through activation of eIF2alpha, p38-MAPK and NF-kappaB in advanced glycation end products stimulated human chondrocytes. Biochim. Biophys. Acta 1823:2179–89. doi:10.1016/j.bbamcr.2012.08.021.
  • Reynolds, A., C. Laurie, R. L. Mosley, and H. E. Gendelman. 2007. Oxidative stress and the pathogenesis of neurodegenerative disorders. Int. Rev. Neurobiol. 82:297–325. doi:10.1016/S0074-7742(07)82016-2.
  • Shao, G., S. Zhang, J. Nie, J. Li, and J. Tong. 2017. Effects of melatonin on mechanisms involved in hypertension using human umbilical vein endothelial cells. J. Toxicol. Environ. Health Part A 80:1342–48. doi:10.1080/15287394.2017.1384171.
  • Shiow, L. R., G. Favrais, L. Schirmer, A. L. Schang, S. Cipriani, C. Andres, J. N. Wright, H. Nobuta, B. Fleiss, P. Gressens, et al. 2017. Reactive astrocyte COX2-PGE2 production inhibits oligodendrocyte maturation in neonatal white matter injury. Glia. 65:2024–37. doi:10.1002/glia.23212.
  • Shrestha, S., J. Zhu, Q. Wang, X. Du, F. Liu, J. Jiang, J. Song, J. Xing, D. Sun, Q. Hou, et al. 2017. Melatonin potentiates the antitumor effect of curcumin by inhibiting IKKβ/NF-κB/COX-2 signaling pathway. Int. J. Oncol. 51:1249–60. doi:10.3892/ijo.2017.4097.
  • Singh, A., A. Chokriwal, M. M. Sharma, D. Jain, J. Saxena, and B. J. Stephen. 2017. Therapeutic role and drug delivery potential of neuroinflammation as a target in neurodegenerative disorders. ACS Chem. Neurosci. 8:1645–55. doi:10.1021/acschemneuro.7b00144.
  • Singh, P., N. Singh, and G. Palit. 2011. Analysing the role of COX-2 in acute oesophagitis and in melatonin-exerted protection against experimental reflux oesophagitis in rats. J. Pharm. Pharmacol. 63:1572–80. doi:10.1111/j.2042-7158.2011.01358.x.
  • Spagnuolo, C., S. Moccia, and G. L. Russo. 2018. Anti-inflammatory effects of flavonoids in neurodegenerative disorders. Eur. J. Med. Chem. 153:105–15. doi:10.1016/j.ejmech.2017.09.001.
  • Svensson, C., S. Z. Fernaeus, K. Part, K. Reis, and T. Land. 2010. LPS-induced iNOS expression in Bv-2 cells is suppressed by an oxidative mechanism acting on the JNK pathway–A potential role for neuroprotection. Brain Res. 1322:1–7. doi:10.1016/j.brainres.2010.01.082.
  • Tamtaji, O. R., N. Mirhosseini, R. J. Reiter, A. Azami, and Z. Asemi. 2019b. Melatonin, a calpain inhibitor in the central nervous system: Current status and future perspectives. J. Cell. Physiol. 234:1001–07. doi:10.1002/jcp.27084.
  • Tamtaji, O. R., N. Mirhosseini, R. J. Reiter, M. Behnamfar, and Z. Asemi. 2019a. Melatonin and pancreatic cancer: Current knowledge and future perspectives. J. Cell. Physiol. 234:5372–78. doi:10.1002/jcp.v234.5.
  • Tang, Y. L., X. Sun, L. B. Huang, X. J. Liu, G. Qin, L. N. Wang, X. L. Zhang, Z. Y. Ke, J. S. Luo, C. Liang, et al. 2019. Melatonin inhibits MLL-rearranged leukemia via RBFOX3/hTERT and NF-kappaB/COX-2 signaling pathways. Cancer Lett. 443:167–78. doi:10.1016/j.canlet.2018.11.037.
  • Thawkar, B. S., and G. Kaur. 2019. Inhibitors of NF-kappaB and P2X7/NLRP3/Caspase 1 pathway in microglia: Novel therapeutic opportunities in neuroinflammation induced early-stage Alzheimer’s disease. J. Neuroimmunol. 326:62–74. doi:10.1016/j.jneuroim.2018.11.010.
  • Valdiglesias, V., M. Sanchez-Flores, A. Maseda, L. Lorenzo-Lopez, D. Marcos-Perez, A. Lopez-Corton, B. Strasser, D. Fuchs, B. Laffon, J. C. Millan-Calenti, et al. 2017. Immune biomarkers in older adults: Role of physical activity. J. Toxicol. Environ. Health Part A 80:605–20. doi:10.1080/15287394.2017.1286898.
  • Woo, S. M., K. J. Min, and T. K. Kwon. 2015. Melatonin-mediated Bim up-regulation and cyclooxygenase-2 (COX-2) down-regulation enhances tunicamycin-induced apoptosis in MDA-MB-231 cells. J. Pineal Res. 58:310–20. doi:10.1111/jpi.12217.
  • Xia, M. Z., Y. L. Liang, H. Wang, X. Chen, Y. Y. Huang, Z. H. Zhang, Y. H. Chen, C. Zhang, M. Zhao, D. X. Xu, et al. 2012. Melatonin modulates TLR4-mediated inflammatory genes through MyD88- and TRIF-dependent signaling pathways in lipopolysaccharide-stimulated RAW264.7 cells. J. Pineal Res. 53:325–34. doi:10.1111/j.1600-079X.2012.01002.x.
  • Xu, Y., X. Lu, Y. Hu, B. Yang, C. K. Tsui, S. Yu, L. Lu, and X. Liang. 2018. Melatonin attenuated retinal neovascularization and neuroglial dysfunction by inhibition of HIF-1alpha-VEGF pathway in oxygen-induced retinopathy mice. J. Pineal Res. 64:e12473. doi:10.1111/jpi.12473.
  • Zare, H., R. Shafabakhsh, R. J. Reiter, and Z. Asemi. 2019. Melatonin is a potential inhibitor of ovarian cancer: Molecular aspects. J. Ovarian Res. 12:26. doi:10.1186/s13048-019-0502-8.
  • Zhao, F., T. Cai, M. Liu, G. Zheng, W. Luo, and J. Chen. 2009. Manganese induces dopaminergic neurodegeneration via microglial activation in a rat model of manganism. Toxicol. Sci. 107:156–64. doi:10.1093/toxsci/kfn213.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.