253
Views
11
CrossRef citations to date
0
Altmetric
Articles

Quantitative structure–activity and quantitative structure–property relationship approaches as alternative skin sensitization risk assessment methods

, , , &

References

  • Abramowitz, R., and S. H. Yalkowsky. 1990. Melting point, boiling point, and symmetry. Pharm. Res. 7:942–47.
  • Acree, W. E., Jr. 1991. Thermodynamic properties of organic compounds: Enthalpy of fusion and melting point temperature compilation. Thermochim. Acta 1:37–56. doi:10.1016/0040-6031(91)87098-H.
  • Ambrose, D., J. E. Connett, J. H. S. Green, J. L. Hales, A. J. Head, and J. F. Martin. 1975. Thermodynamic properties of organic oxygen compounds. 42. Physical and thermodynamic properties of benzaldehyde. J. Chem. Thermodyn. 7:1143–57. doi:10.1016/0021-9614(75)90035-X.
  • Ambrose, D., and R. Townsend. 1963. Thermodynamic properties of organic oxygen compounds. Part IX. The critical properties and vapour pressures, above five atmospheres, of six aliphatic alcohols. J. Chem. Soc. 54:3614–25. doi:10.1039/jr9630003614.
  • Andon, R. J. L., J. F. Counsell, and J. F. Martin. 1963. Thermodynamic properties of organic oxygen compounds. Part II. The thermodynamic properties from 10 to 330K of isopropyl alcohol. Trans. Faraday Soc. 59:1555–58. doi:10.1039/TF9635901555.
  • Andrews, D. H., G. Lynn, and J. Johnston. 1926. The heat capacities and heat of crystallization of some isomeric aromatic compounds. J. Am. Chem. Soc. 48:1274–87. doi:10.1021/ja01416a022.
  • Api, A. M., D. Basketter, and J. Lalko. 2015. Correlation between experimental human and murine skin sensitization induction thresholds. Cutan. Ocul. Toxicol. 34:298–302. doi:10.3109/15569527.2014.979425.
  • Ashcroft, S. J. 1976. Vapor pressures and enthalpies of vaporization of benzyl halides. J. Chem. Eng. Data 21:397–298. doi:10.1021/je60071a009.
  • Basketter, D., and I. Kimber. 2001. Predictive tests for irritants and allergens and their use in quantitative risk assessment. In Textbook of contact dermatitis, R. J. G. Rycroft et al. (eds.), 227–36. Berlin, Germany: Springer-Verlag.
  • Basketter, D. A., F. Gerberick, and I. Kimber. 2007. The local lymph node assay and the assessment of relative potency: Status of validation. Contact Derm. 57:70–75. doi:10.1111/j.1600-0536.2007.01141.
  • Basketter, D. A., L. J. Lea, A. Dickens, D. Briggs, I. Pate, R. J. Dearman, and I. Kimber. 1999. A comparison of statistical approaches to the derivation of EC3 values from local lymph node assay dose responses. J. Appl. Toxicol. 19:261–66.
  • Basketter, D. A., C. K. Smith Pease, and G. Y. Patlewicz. 2003. Contact allergy: The local lymph node assay for the prediction of hazard and risk. Clin. Exp. Dermatol. 28:218–21.
  • Bos, J. D., and M. M. Meinardi. 2000. The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp. Dermatol. 9:165–69.
  • Braeuning, C., A. Braeuning, H. Mielke, A. Holzwarth, and M. Peiser. 2018. Evaluation and improvement of QSAR predictions of skin sensitization for pesticides. SAR QSAR Environ. Res. 29:823–46. doi:10.1080/1062936X.2018.1518261.
  • Bret-Dibat, P., and A. Lichanot. 1989. Thermodynamic properties of positional isomers of disubstituted benzene in condensed phase. Thermochim. Acta 147:261–71. doi:10.1016/0040-6031(89)85181-0.
  • Casey, W. M. 2016. Advances in the development and validation of test methods in the United States. Toxicol. Res. 32:9–14. doi:10.5487/TR.2016.32.1.009.
  • Chang, S. S., J. A. Horman, and A. B. Bestul. 1967. Heat capacities and related thermal data for diethyl phthalate crystal, glass, and liquid to 360K. J. Res. Natl. Bur. Stand. 71:293–305. doi:10.6028/jres.071A.036.
  • Chickos, J. S., C. M. Braton, D. G. Hesse, and G. F. Liebman. 1991. Estimating entropies and enthalpies of fusion of organic compounds. J. Org. Chem. 56:927–38. doi:10.1021/jo00003a007.
  • Choi, S. M., T. H. Roh, D. S. Lim, S. Kacew, H. S. Kim, and B. M. Lee. 2018. Risk assessment of benzalkonium chloride in cosmetic products. J. Toxicol. Environ. Health B 21:8–23. doi:10.1080/10937404.2017.1408552.
  • Clever, H. L., and E. F. Westrum Jr. 1970. Dimethylsulfoxide and dimethylsulfone. Heat capacities, enthalpies of fusion, and thermodynamic properties. J. Phys. Chem. 74:1309–17. doi:10.1021/j100701a027.
  • Counsell, J. F., J. L. Hales, and J. F. Martin. 1965. Thermodynamic properties of organic oxygen compounds. Part 16. Butyl alcohol. Trans. Faraday Soc. 61:1869–75. doi:10.1039/TF9656101869.
  • Danish QSAR Database. 2018. Database search. http://qsar.food.dtu.dk.
  • DeWit, H. G. M., J. C. A. Offringa, C. G. De Kruif, and J. C. Van Miltenburg. 1983. Thermodynamic properties of molecular organic crystals containing nitrogen, oxygen and sulfur. III. Molar heat capacities measured by differential scanning calorimetry. Thermochim. Acta 65:43–51. doi:10.1016/0040-6031(83)80006-9.
  • Domalski, E. S., and E. D. Hearing. 1996. Heat capacities and entropies of organic compounds in the condensed phase. Volume III. J. Phys. Chem. Ref. Data 25:1–525. doi:10.1063/1.555985.
  • Donnelly, J. R., L. A. Drewes, R. L. Johnson, W. D. Munslow, K. K. Knapp, and G. W. Sovocool. 1990. Purity and heat of fusion data for environmental standards as determined by differential scanning calorimetry. Thermochim. Acta 2:155–87. doi:10.1016/0040-6031(90)80476-F.
  • Douslin, D. R., and H. M. Huffman. 1946. Low-temperature thermal data on the five isometric hexanes. J. Am. Chem. Soc. 68:1704–08. doi:10.1021/ja01213a006.
  • Du, H., J. Wang, Z. Hu, X. Yao, and X. Zhang. 2008. Prediction of fungicidal activities of rice blast disease based on least-squares support vector machines and project pursuit regression. J. Agric. Food Chem. 56:10785–92. doi:10.1021/jf8022194.
  • Dzhafarov, O. I., K. A. Karasharli, and A. M. Kuliev. 1982. Study of the real heat capacity of N,N-dimethyl-1,3-propanediamine in the range 12–300K. Azerbaijan Chem. J. 3:111–13.
  • EC (European Commission). 2011. Review of QSAR models and software tools for predicting acute and chronic systemic toxicity. http://publications.jrc.ec.europa.eu/repository/bitstream/JRC61930/eur_24639_en.pdf.
  • EC (European Commission). 2013. Full EU ban on animal testing for cosmetics enters into force. Brussels, Belgium: Europa EU.
  • ECETOC (European Centre for Ecotoxicology and Toxicology of Chemicals). 2003a. Contact sensitisation: Classification according to potency. Technical Report No. 87, European Centre for Ecotoxicology and Toxicology of Chemicals, Brussels, Belgium.
  • ECETOC (European Centre for Ecotoxicology and Toxicology of Chemicals). 2003b. Contact sensitisation: Classification according to potency: A commentary. Document No. 43, European Centre for Ecotoxicology and Toxicology of Chemicals, Brussels, Belgium.
  • Fine, D. H., and P. Gray. 1967. Explosive decomposition of solid benzoyl peroxide. Combust Flame 11:71–78. doi:10.1016/0010-2180(67)90010-7.
  • Gallis, H. E., G. J. K. van Den Berg, and H. A. J. Oonk. 1996. Thermodynamic properties of crystalline d-limonene determined by adiabatic calorimetry. J. Chem. Eng. Data 41:1303–06. doi:10.1021/je960094l.
  • Garner, W. E., and F. C. Randall. 1924. Alternation in the heats of crystallization of the normal monobasic fatty acids. Part I. J. Chem. Soc. 125:881–96. doi:10.1039/CT9242500881.
  • Gerberick, G. F., C. A. Ryan, R. J. Dearman, and I. Kimber. 2007a. Local lymph node assay (LLNA) for detection of sensitization capacity of chemicals. Methods 41:54–60. doi:10.1016/j.ymeth.2006.07.006.
  • Gerberick, G. F., C. A. Ryan, P. S. Kern, H. Schlatter, R. J. Dearman, I. Kimber, G. Y. Patlewicz, and D. A. Basketter. 2005. Compilation of historical local lymph node data for evaluation of skin sensitization alternative methods. Dermatitis 16:157–202.
  • Gerberick, G. F., J. D. Vassallo, L. M. Foertsch, B. B. Price, J. G. Chaney, and J. P. Lepoittevin. 2007b. Quantification of chemical peptide reactivity for screening contact allergens: A classification tree model approach. Toxicol. Sci. 97:417–27. doi:10.1093/toxsci/kfm064.
  • Guha, R., D. Dutta, P. C. Jurs, and T. Chen. 2006. Local lazy regression: Making use of the neighborhood to improve QSAR predictions. J. Chem. Inf. Model. 46:1836–47. doi:10.1021/ci060064e.
  • Han, S. M., G. G. Lee, and K. K. Park. 2012. Skin sensitization study of bee venom (Apis mellifera L.) in guinea pigs. Toxicol. Res. 28:1–4. doi:10.5487/TR.2012.28.1.001.
  • Hildenbrand, D. L., R. A. McDonald, W. R. Kramer, and D. R. Stull. 1959. Thermodynamic and spectroscopic study of vinylidene chloride. I. Thermodynamic properties of the solid, liquid, and ideal gas. J. Chem. Phys. 30:930–34. doi:10.1063/1.1730128.
  • Hoffman, J. D., and B. F. Decker. 1953. Solid state phase changes in long chain compounds. J. Phys. Chem. 57:520–29. doi:10.1021/j150506a009.
  • Inoue, A., and K. Horikoshi. 1989. A Pseudomonas thrives in high concentrations of toluene. Nature 338:264–66. doi:10.1038/338264a0.
  • Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM). 2011. Usefulness and limitations of the murine local lymph node assay for potency categorization of chemicals causing allergic contact dermatitis in humans. https://ntp.niehs.nih.gov/iccvam/docs/immunotox_docs/llna-pot/tmer.pdf.
  • Katritzkya, A. R., D. A. Dobcheva, and M. Karelson. 2014. Physical, chemical, and technological property correlation with chemical structure: The potential of QSPR. Z. Naturforsch C. 4:373–84.
  • Kern, P. S., G. F. Gerberick, C. A. Ryan, I. Kimber, A. Aptula, and D. A. Basketter. 2010. Local lymph node data for the evaluation of skin sensitization alternatives: A second compilation. Dermatitis 21:8–32.
  • Kestens, K., G. Auclair, K. Drozdzewska, A. Held, G. Roebben, and T. Linsinger. 2010. Thermodynamic property values of selected polycyclic aromatic hydrocarbons measured by differential scanning calorimetry. J. Therm. Anal. Calorim. 99:245–61. doi:10.1007/s10973-009-0440-6.
  • Kim, K. B., Y. W. Kim, S. K. Lim, T. H. Roh, D. Y. Bang, S. M. Choi, D. S. Lim, Y. J. Kim, S. H. Baek, M. K. Kim, et al. 2017. Risk assessment of zinc oxide, a cosmetic ingredient used as a UV filter of sunscreens. J. Toxicol. Environ. Health B 20:155–82. doi:10.1080/10937404.2017.1290516.
  • Kim, M. K., K. B. Kim, K. Yoon, S. Kacew, H. S. Kim, and B. M. Lee. 2018. IL-1α and IL-1β as alternative biomarkers for risk assessment and the prediction of skin sensitization potency. J. Toxicol. Environ. Health A 81:830–43. doi:10.1080/15287394.2018.1494474.
  • Kimber, I., D. A. Basketter, G. F. Gerberick, and R. J. Dearman. 2002. Allergic contact dermatitis. Int. Immunopharmacol. 2:201–11.
  • Kimber, I., M. Cumberbatch, R. J. Dearman, M. Bhushan, and C. E. Griffiths. 2000. Cytokines and chemokines in the initiation and regulation of epidermal Langerhans cell mobilization. Br. J. Dermatol. 142:401–12.
  • Kimber, I., J. Hilton, R. J. Dearman, G. F. Gerberick, C. A. Ryan, D. A. Basketter, L. Lea, R. V. House, G. S. Ladics, S. E. Loveless, et al. 1998. Assessment of the skin sensitization potential of topical medicaments using the local lymph node assay: An interlaboratory evaluation. J. Toxicol. Environ. Health A 53:563–79.
  • Lachapelle, J. M. 2014. Allergic contact dermatitis: Clinical aspects. Rev. Environ. Health 29:185–94. doi:10.1515/reveh-2014-0055.
  • Lee, B. M., and S. Kacew. 2018. Advances in toxicological research and risk assessment. J. Toxicol. Environ. Health A 81:240. doi:10.1080/15287394.2018.1439689.
  • Lee, M. J., Y. K. Chang, H. M. Lin, and C. H. Chen. 1997. Solid-liquid equilibria for 4-methoxyphenol with catechol, ethylenediamine, or piperazine. J. Chem. Eng. Data 42:349–52. doi:10.1021/je960201b.
  • Lim, D. S., T. H. Roh, M. K. Kim, Y. C. Kwon, S. M. Choi, S. J. Kwack, K. B. Kim, S. Yoon, H. S. Kim, and B. M. Lee. 2018a. Non-cancer, cancer, and dermal sensitization risk assessment of heavy metals in cosmetics. J. Toxicol. Environ. Health A 81:432–52. doi:10.1080/15287394.2018.1451191.
  • Lim, D. S., T. H. Roh, M. K. Kim, Y. C. Kwon, S. M. Choi, S. J. Kwack, K. B. Kim, S. Yoon, H. S. Kim, and B. M. Lee. 2018b. Risk assessment of N-nitrosodiethylamine (NDEA) and N-nitrosodiethanolamine (NDELA) in cosmetics. J. Toxicol. Environ. Health A 81:465–80. doi:10.1080/15287394.2018.1460782.
  • Liu, P., and W. Long. 2009. Current mathematical methods used in QSAR/QSPR studies. Int. J. Mol. Sci. 10:1978–98. doi:10.3390/ijms10051978.
  • Lv, X. C., X. H. Gao, Z. C. Tan, Y. S. Li, and L. X. Sun. 2008. Molar heat capacity and thermodynamic properties of 1,2-cyclohexane dicarboxylic anhydride [C8H10O3]. J. Therm. Anal. Calorim. 92:523–27. doi:10.1007/s10973-007-8445-5.
  • Matos, M. A. R., C. C. S. Sousa, M. S. Miranda, V. M. F. Morais, and J. F. Liebman. 2009. Energetics of coumarin and chromone. J. Phys. Chem. B 113:11216–21. doi:10.1021/jp9026942.
  • McCullough, J. P., D. R. Douslin, J. F. Messerly, I. A. Hossenlopp, T. C. Kincheloe, and G. Waddington. 1957. Pyridine: Experimental and calculated chemical thermodynamic properties between 0 and 1500 K.; A revised vibrational assignment. J. Am. Chem. Soc. 79:4289–95. doi:10.1021/ja01573a014.
  • Mentado, J., F. Henoc, and A. Patricia. 2008. Combustion energies and formation enthalpies of 2-SH-benzazoles. J. Chem. Thermodyn. 7:1106–09. doi:10.1016/j.jct.2008.02.018.
  • NAFTA(North American Free Trade Agreement) Technical Working Group on Pesticides. 2012. Quantitative structure activity relationship guidance document. https://www.epa.gov/sites/production/files/2016-01/documents/qsar-guidance.pdf.
  • NCBI(National Center for Biotechnology Information). 2019. PubChem compound. https://www.ncbi.nlm.nih.gov.
  • Nepal, M. R., Y. Kang, M. J. Kang, D. H. Nam, and T. C. Jeong. 2018. A β-galactosidase-expressing E. coli culture as an alternative test to identify skin sensitizers and nonsensitizers. J. Toxicol. Environ. Health A 81:288–301. doi:10.1080/15287394.2018.1440187.
  • NIH (National Institutes of Health). 2009. Recommended performance standards: Murine local lymph node assay. NIH Publication No. 09-7357. https://ntp.niehs.nih.gov/iccvam/docs/immunotox_docs/llna-ps/llnaperfstds.pdf.
  • NIST (National Institute of Standards and Technology). 2018. Chemistry webbook. https://webbook.nist.gov/chemistry.
  • OECD (Organisation for Economic Co-operation and Development). 2012. The adverse outcome pathway for skin sensitisation initiated by covalent binding to proteins. Part 1: Scientific evidence. https://www.oecd-ilibrary.org/environment/oecd-series-on-testing-and-assessment_20777876.
  • Pacor, P. 1967. Applicability of the DuPont 900 DTA apparatus in quantitative differential thermal analysis. Anal. Chim. Acta. 37:200–08. doi:10.1016/S0003-2670(01)80660-7.
  • Parks, G. S., H. M. Huffman, and M. Barmore. 1933. Thermal data on organic compounds. XI. The heat capacities, entropies and free energies of ten compounds containing oxygen or nitrogen. J. Am. Chem. Soc. 55:2733–40. doi:10.1021/ja01334a016.
  • Pitzer, K. S., and D. W. Scott. 1943. The thermodynamics and molecular structure of benzene and its methyl derivatives. J. Am. Chem. Soc. 65:803–29. doi:10.1021/ja01245a019.
  • Rai, U. S., and K. D. Mandal. 1990. Chemistry of organic eutectics: P-phenylenediamine-m-nitrobenzoic acid system involving the 1:2 addition compound. Bull. Chem. Soc. Jpn. 63:1496–502. doi:10.1246/bcsj.63.1496.
  • Rao, S. P., and S. Sunkada. 2007. Making sense of boiling points and melting points. Resonance 12:43–57. doi:10.1007/s12045-007-0059-5.
  • Ryu, H. Y., S. Lee, K. S. Ahn, H. J. Kim, S. S. Lee, H. J. Ko, J. K. Lee, M. H. Cho, M. Y. Ahn, E. M. Kim, et al. 2016. Oral toxicity study and skin sensitization test of a cricket. Toxicol. Res. 32:159–73. doi:10.5487/TR.2016.32.2.159.
  • Sciesinski, J., J. Mayer, T. Wasiutynski, E. Sciesinska, and J. Wójtowicz. 1994. Calorimetric study of cyclooctanol. Phase Transitions 1:15–21.
  • Stull, D. R. A. 1937. Semi-micro calorimeter for measuring heat capacities at low temperatures. J. Am. Chem. Soc. 59:2726–33. doi:10.1021/ja01291a075.
  • Takenouchi, O., M. Miyazawa, K. Saito, T. Ashikaga, and H. Sakaguchi. 2013. Predictive performance of the human cell line activation test (h-CLAT) for lipophilic chemicals with high octanol-water partition coefficients. J. Toxicol. Sci. 38:599–609.
  • Temprado-María, M., M. V. Roux, and J. S. Chickos. 2008. Some thermophysical properties of several solid aldehydes. J. Therm. Anal. Calorim. 94:257–62. doi:10.1007/s10973-007-8883-0.
  • USEPA (United States Environmental Protection Agency). 2018. Chemistry dashboard. https://comptox.epa.gov/dashboard.
  • Vasil’ev, V. G., and B. V. Lebedev. 1998. Thermodynamic properties of aliphatic aldehydes and polyaldehydes: Effect of composition and structure. Polym. Sci. Ser. A 40:464–71.
  • Verevkin, S. P., and S. Schick. 2003. Determination of vapor pressures, enthalpies of sublimation, enthalpies of vaporization, and enthalpies of fusion of a series of chloro-aminobenzenes and chloro-nitrobenzenes. Fluid Phase Equilib 211:161–77. doi:10.1016/S0378-3812(03)00181-X.
  • Wassvik, C. M., A. G. Holmén, R. Draheim, P. Artursson, and C. A. S. Bergström. 2008. Molecular characteristics for solid-state limited solubility. J. Med. Chem. 51:3035–39. doi:10.1021/jm701587d.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.