277
Views
6
CrossRef citations to date
0
Altmetric
Articles

Exposure to graphene nanoparticles induces changes in measures of vascular/renal function in a load and form-dependent manner in mice

, , , , , & show all

References

  • Anderson, D. S., E. S. Patchin, R. M. Silva, D. L. Uyeminami, A. Sharmah, T. Guo, G. K. Das, J. M. Brown, J. Shannahan, T. Gordon, et al. 2015. Influence of particle size on persistence and clearance of aerosolizeed silver naoparticles in the rat lung. Toxicol. Sci. 144:366–81. doi:10.1093/toxsci/kfv005.
  • Banday, A. A., and M. F. Lokhandwala. 2009. Inhibition of natriuretic factors increases blood pressure in rats. Am. J. Physiol. Renal Physiol. 297:F397–F402. doi:10.1152/ajprenal.90729.2008.
  • Bengtson, S., K. B. Knudsen, Z. O. Kyjovsla, T. Berthing, V. Slaug, M. Levin, I. K. Koponen, A. Shivayogimath, T. J. Booth, B. Alonso, et al. 2017. Differences in inflammation and acute phase response but similar genotoxicity in mice following pulmonary exposure to graphe oxide and reduced graphine oxide. PLoS ONE. 12:e0178355. doi:10.1371/journal.pone.0178355.
  • Bussy, C., D. Jasim, N. Lozano, D. Terry, and K. Kostarelos. 2015. The current graphene safety landscape-a literature mining exercise. Nanoscale. 7:2015. doi:10.1039/C5NR00236B.
  • Chugh, G., M. F. Lokhandwala, and M. Asghar. 2012. Altered functioning of both renal dopamine D1 and angiotensin II type 1 receptors causes hypertension in old rats. Hypertension. 59:1029–36. doi:10.1161/HYPERTENSIONAHA.112.192302.
  • Croft, D. P., S. J. Cameron, C. N. Morrell, C. J. Lowenstein, F. Ling, W. Zareba, P. K. Hopke, M. J. Utell, S. W. Thurston, K. Thevenet-Morrison, et al. 2017. Associations between ambient wood smoke and other particulate pollutants and biomarkers of systemic inflammation, coagulation and thrombosis in cardiac patients. Environ. Res. 154:352–61. doi:10.1016/j.envres.2017.01.027.
  • Dasari Shareena, T. P., D. McShan, A. K. Dasmahapatra, and P. B. Tchounwou. 2018. A review on graphene-based nanomaterials in biomedical applications and risks in environment and health. Nanomicro. Lett. 10. doi:10.1007/s40820-018-0206-4.
  • Demir, E., and R. Marcos. 2018. Toxic and genotoxic effects of graphene and multi-walled carbon nanotubes. J. Toxicol. Environ. Health, Part A. 81:645–60. doi:10.1080/15287394.2018.1477314.
  • Donaldson, K., R. Duffin, J. P. Langrish, M. R. Miller, N. L. Mills, C. A. Poland, J. Raftis, A. Shah, C. A. Shaw, and D. E. Newby. 2013. Nanoparticles and the cardiovascular system: A critical review. Nanomedicine (Lond). 8:403–23. doi:10.2217/nnm.13.16.
  • Duch, M. C., G. R. Budinger, Y. T. Liang, S. Soberanes, D. Urich, S. E. Chiarella, L. A. Campochiaro, A. Gonzalez, N. S. Chandel, M. C. Hersam, et al. 2011. Minimizing oxidation and stable nanoscale dispersion improves the biocompatibility of graphene in the lung. Nano Lett. 11:5201–07. doi:10.1021/nl202515a.
  • Erdely, A., M. Dahm, B. T. Chen, P. C. Zeidler-Erdely, J. E. Fernback, M. E. Birch, D. E. Evans, M. L. Kashon, J. A. Deddens, T. Hulderman, et al. 2013. Carbon nanotube dosimetry: From workplace exposure assessment to inhalation toxicology. Part Fibre Toxicol. 10:53. doi:10.1186/1743-8977-10-56.
  • Feng, L., and Z. Liu. 2011. Graphene in biomedicine: Opportunities and challenges. Nanomedicine (Lond). 6:317–24. doi:10.2217/nnm.10.158.
  • Ghio, A. J., M. S. Carraway, and M. C. Madden. 2012. Composition of air pollution particles and oxidative stress in cells, tissues, and living systems. J. Toxicol. Environ. Health, Part B. 15:1–21. doi:10.1080/10937404.2012.632359.
  • Gildea, J. J., I. T. Shah, R. VanSciver, J. A. Israel, C. Enzensperger, H. E. McGrath, P. A. Jose, and R. A. Felder. 2014. The cooperative roles of the dopamine receptors D1R and D5R, on the regulation of renal sodium transport. Kidney Int. 86:118–26. doi:10.1038/ki.2014.5.
  • Han, S. G., J. K. Kim, J. H. Shin, J. H. Hwang, J. S. Lee, T. G. Kim, J. H. Lee, G. H. Lee, K. S. Kim, H. S. Lee, et al. 2015. Pulmonary responses of sprague-dawley rats in single inhalation exposure to graphene oxide nanomaterials. Biomed. Res. Int. 2015:376756. doi:10.1155/2015/376756.
  • Holz, O., K. Heusser, M. Muller, H. Windt, K. Schwarz, C. Schindler, J. Tank, J. M. Hohlfeld, and J. Jordan. 2018. Airway and system inflammatory responses to ultafine carbon black particles and ozone in older health subjects. J. Toxicol. Environ. Health, Part A. 18:576–88. doi:10.1080/15287394.2018.1463331.
  • Kan, H., Z. Wu, Y. C. Lin, T. H. Chen, J. L. Cumpston, M. L. Kashon, S. Leonard, A. E. Munson, and V. Castranova. 2014. The role of nodose ganglia in the regulation of cardiovascular function following pulmonary exposure to ultrafine titanium dioxide. Nanotoxicology. 8:447–54. doi:10.3109/17435390.2013.796536.
  • Kermanizadeh, A., I. Gosens, L. MacCalman, H. Johnston, P. H. Danielsen, N. R. Jacobsen, A. G. Lenz, T. Fernandes, R. P. Schins, F. R. Cassee, et al. 2016. A multilaboratory toxicological assessment of a panel of 10 engineered nanomaterials to human health–ENPRA Project–The highlights, limitations, and current and future challenges. J. Toxicol. Environ. Health, Part B. 19:1–28. doi:10.1080/10937404.2015.1126210.
  • Kim, J. K., J. H. Shin, J. S. Lee, J. H. Hwang, J. H. Lee, J. E. Baek, T. G. Kim, B. W. Kim, J. S. Kim, G. H. Lee, et al. 2016. 28-Day inhalation toxicity of graphene nanoplatelets in Sprague-Dawley rats. Nanotoxicology. 10:891–901. doi:10.3109/17435390.2015.1133865.
  • Knuckles, T. L., J. Yi, D. G. Frazer, H. D. Leonard, B. T. Chen, V. Castranova, and T. R. Nurkiewicz. 2012. Nanoparticle inhalation alters systemic arteriolar vasoreactivity through sympathetic and cyclooxygenase-mediated pathways. Nanotoxicology. 6:724–35. doi:10.3109/17435390.2011.606926.
  • Kotsonis, P., A. Frey, L. G. Frolich, H. Hofman, A. Reif, D. A. Wink, M. Feelisch, and H. H. Schmidt. 1999. Autoinhibition of neuronal nitric oxide synthase: Distinct effects of reactive nitrogen and oxygen species on enzyme activity. Biochem. J. 340:745–52.
  • Krajnak, K., H. Kan, S. Waugh, G. R. Miller, C. Johnson, J. R. Roberts, W. T. Goldsmith, M. Jackson, W. McKinney, D. Frazer, et al. 2011. Acute effects of COREXIT EC9500A on cardiovascular functions in rats. J. Toxicol. Environ. Health Part A. 74:1397–404. doi:10.1080/15287394.2011.606795.
  • LeBlanc, A. J., A. M. Moseley, B. T. Chen, D. Frazer, V. Castranova, and T. R. Nurkiewicz. 2010. Nanoparticle inhalation impairs coronary microvascular reactivity via a local reactive oxygen species-dependent mechanism. Cardiovasc. Toxicol. 10:27–36. doi:10.1007/s12012-009-9060-4.
  • Lee, J. H., J. H. Han, J. H. Kim, B. Kim, D. Bello, J. K. Kim, G. H. Lee, E. K. Sohn, K. Lee, K. Ahn, et al. 2016. Exposure monitoring of graphene nanoplatelets manufacturing workplaces. Inhal. Toxicol. 28:281–91. doi:10.3109/08958378.2016.1163442.
  • Li, B., J. Yang, Q. Huang, Y. Zhang, C. Peng, Y. Zhang, Y. He, J. Shi, W. Li, J. Hu, et al. 2013. Biodistribution and pulmonary toxicity of intratracheally instilled graphene oxide in mice. NPG Asia Materials. 5:e44. doi:10.1038/am.2013.7.
  • Li, R., L. M. Guiney, C. H. Chang, N. D. Mansukhani, Z. Ji, X. L. Wang, Y.-P. Liao, W. Jiang, B. Sun, M. C. Hersam, et al. 2018. Surface oxidation and graphene oxide determines membrane damage, lipid peroxidation and cytotoxicity in macrophages in a pulmonary toxicity model. ACS Nano. 12:1390–402. doi:10.1021/acsnano.7b07737.
  • Liang, M., M. Hu, B. Pan, Y. Xie, and E. J. Petersen. 2016. Biodistribution and toxicity of radio-labeled few layer graphene in mice after intratracheal instillation. Part Fibre Toxicol. 13:7–18. doi:10.1186/s12989-016-0120-1.
  • Long, C. M., M. A. Nascarella, and P. A. Valberg. 2013. Carbon black vs. black carbon and other airborne materials containing elemental carbon: Physical and chemical distinctions. Environ. Pollut. 181:271–86. doi:10.1016/j.envpol.2013.06.009.
  • Lovinsky-Desir, S., K. H. Jung, A. G. Rundle, L. A. Hoepner, J. B. Bautista, F. P. Perera, S. N. Chillrud, M. S. Perzanowski, and R. L. Miller. 2016. Physical activity, black carbon exposure and airway inflammation in an urban adolescent cohort. Environ. Res. 151:756–62. doi:10.1016/j.envres.2016.09.005.
  • Lyu, L., H. Wang, B. Li, Q. Qin, L. Qi, M. Nagarkatti, P. Nagarkatti, J. S. Janicki, X. L. Wang, and T. Cui. 2015. A critical role of cardiac fibroblast-derived exosomes in activating renin angiotensin system in cardiomyocytes. J. Mol. Cell. Cardiol. 89:268–79. doi:10.1016/j.yjmcc.2015.10.022.
  • Ma-Hock, L., V. Strauss, S. Treumann, K. Kuttler, W. Wohlleben, T. Hofmann, S. Groters, K. Wiench, B. van Ravenzwaay, and R. Landsiedel. 2013. Comparative inhalation toxicity of multi-wall carbon nanotubes, graphene, graphite nanoplatelets and low surface carbon black. Part Fibre Toxicol. 10:23. doi:10.1186/1743-8977-10-56.
  • Mao, L., M. Hu, B. Pan, Y. Xie, and E. J. Petersen. 2016. Biodistrubtion and toxicity of ratio-labeled few layer graphene in mice after intratracheal installation. Part Fibre Toxicol. 13:1–12. doi:10.1186/s12989-015-0112-6.
  • Materials AsoT. 2002. Standard test method for metal powder specifc surface area by physical adsorption, vol ASTM B922-02, ASTM InternationalWest Conshohocken, PA.
  • McKinney, W., M. Jackson, T. M. Sager, J. S. Reynolds, B. T. Chen, A. Afshari, K. Krajnak, S. Waugh, C. Johnson, R. R. Mercer, et al. 2012. Pulmonary and cardiovascular responses of rats to inhalation of a commercial antimicrobial spray containing titanium dioxide nanoparticles. Inhal. Toxicol. 24:447–57. doi:10.3109/08958378.2012.685111.
  • Mukherjee, S., P. Sriram, A. K. Barui, S. K. Nethi, V. Veeriah, S. Chatterjee, K. Ittara, I. Suresh, and C. R. Patra. 2015. Graphene oxides show angiogenic properties. Adv. Healthcare Mater. 4:1722–32. doi:10.1002/adhm.201500155.
  • Nurkiewicz, T. R., D. W. Porter, M. Barger, L. Millecchia, K. M. Rao, P. J. Marvar, A. F. Hubbs, V. Castranova, and M. A. Boegehold. 2006. Systemic microvascular dysfunction and inflammation after pulmonary particulate matter exposure. Environ. Health Perspect. 114:412–19. doi:10.1289/ehp.8413.
  • O’Mahony, C., E. U. Haq, C. Sillien, and S. A. M. Tofail. 2019. Rheological issues in carbon-based inks for additive manufacturing. Micromachines (Basel). 10:99–123. doi:10.3390/mi10020099.
  • Porter, D. W., A. F. Hubbs, R. R. Mercer, N. Wu, M. G. Wolfarth, K. Sriram, S. Leonard, L. Battelli, D. Schwegler-Berry, S. Friend, et al. 2010. Mouse pulmonary dose- and time course-responses induced by exposure to multi-walled carbon nanotubes. Toxicology. 269:136–47. doi:10.1016/j.tox.2009.10.017.
  • Roberts, J. R., S. E. Anderson, H. Kan, K. Krajnak, J. A. Thompson, A. Kenyon, W. T. Goldsmith, W. McKinney, D. G. Frazer, M. Jackson, et al. 2014. Evaluation of pulmonary and systemic toxicity of oil dispersant (COREXIT EC9500A((R))) following acute repeated inhalation exposure. Environ. Health Insights. 8 (Suppl 1):63–74. doi:10.4137/EHI.S15262.
  • Roberts, J. R., W. McKinney, H. Kan, K. Krajnak, D. G. Frazer, T. A. Thomas, S. Waugh, A. Kenyon, R. I. MacCuspie, V. A. Hackley, et al. 2013. Pulmonary and cardiovascular responses of rats to inhalation of silver nanoparticles. J. Toxicol. Environ. Health Part A. 76:651–68. doi:10.1080/15287394.2013.792024.
  • Roberts, J. R., R. R. Mercer, A. B. Stefaniak, M. S. Seehra, U. K. Geddam, I. S. Chaudhuri, A. Kyrlidis, V. K. Kodali, T. Sager, A. Kenyon, et al. 2016. Evaluation of pulmonary and systemic toxicity following lung exposure to graphite nanoplates: A member of the graphene-based nanomaterial family. Part. Toxicol. 13:s1289-016–0145-5.
  • Saber, A. T., J. S. Lamson, N. R. Jacobsen, G. Ravn-Haren, K. S. Hougaard, A. N. Nyendi, P. Wahlberg, A. M. Madsen, P. Jackson, H. Wallin, et al. 2013. Particle-induced pulmonary acute phase response correlates with neurotrophil influx linking inhaled particles and cardiovascular risk. PLoS ONE. 8:e69020. doi:10.1371/journal.pone.0069020.
  • Sager, T. M., D. W. Porter, V. A. Robinson, W. G. Lindsley, D. E. Schwegler-Berry, and V. Castranova. 2007. Improved method to disperse nanoparticles for in vitro and in vivo investigation of toxicity. Nanotoxicology. 1:118–29. doi:10.1080/17435390701381596.
  • Sanchez, V. C., A. Jachak, R. H. Hurt, and A. B. Kane. 2012. Biological interactions of graphene-family nanomaterials-An interdisciplinary review. Chem. Res. Toxicol. 13:15–34. doi:10.1021/tx200339h.
  • Sang Tran, T., N. K. Dutta, and N. Roy Choudhury. 2019. Graphene-based inks for printing of planar micro-supercapacitors: A review. Materials (Basel). 12:978–99. doi:10.3390/ma12060978.
  • Schinwald, A., F. A. Murphy, A. Jones, W. MacNee, and K. Donaldson. 2012. Graphene-based nanoplatelets: A new risk to the respiratory system as a consequence of their unusual aerodynamic properties. ACS Nano. 6:736–46. doi:10.1021/nn204229f.
  • Shin, J. H., S. G. Han, J. K. Kim, B. W. Kim, J. H. Hwang, J. S. Lee, J. H. Lee, J. E. Baek, T. G. Kim, K. S. Kim, et al. 2015. 5-Day repeated inhalation and 28-day post-exposure study of graphene. Nanotoxicology. 9:1023–31. doi:10.3109/17435390.2014.998306.
  • Shurin, M. R., N. Yanamala, E. R. Kisin, A. V. Tkach, G. V. Shurin, A. R. Murray, H. D. Lenard, J. S. Reynolds, D. W. Gutin, and A. Star. 2014. Graphene oxide attenuates Th2-type immune responses, but augments airway remodeling and hyperresponsiveness in a murine model of asthma. ACS Nano. 8:2014. doi:10.1021/nn406454u.
  • Smith, S. 2017. The global market for graphene. Future markets: PRNewswire. https://www.marketwatch.com/press-release/the-global-market-for-graphene-2017-10-26
  • Su, W.-C., B.-K. Ku, P. Kulkarni, and Y. S. Cheng. 2016. Deposition of graphene nanoparticles in human upper airways. J. Occup. Environ. Med. 13:48–59.
  • Tabish, T. A., S. Zhang, and P. G. Winyard. 2018. Developing the next generation of graphene-based plaforms for cancer therapuetics: The potential role of reactive oxygen species. Redox Biol. 15:34–40.
  • Tabor, C. M., C. A. Shaw, S. Robertson, M. R. Miller, R. Duffin, K. Donaldson, D. E. Newby, and P. W. Hadoke. 2016. Platelet activation independent of pulmonary inflammation contributes to diesel exhaust particulate-induced promotion of arterial thrombosis. Part Fibre Toxicol. 13:6.
  • Xia, Y., V. L. Dawson, T. M. Dawson, S. H. Snyder, and I. L. Zweier. 1996. Nitric oxide synthase generates superoxide and nitric oxide in arginine-depleted cells leading to peroxynitrite-mediated cellular injury. Proc. Natl. Acad. Sci. USA. 93:677–6774.
  • Yang, Y., S. Cuevas, S. Yang, V. A. Villar, C. Escano, L. Asico, P. Yu, X. Jiang, E. J. Weinman, I. Armando, et al. 2014. Sestrin2 decreases renal oxidative stress, lowers blood pressure, and mediates dopamine D2 receptor-induced inhibition of reactive oxygen species production. Hypertension. 64:825–32.
  • Zhang, B., P. Wei, Z. Zhou, and T. Wei. 2016a. Interactions of graphene with mammalian cells: Molecular mechanisms and biomedical insights. Adv Drug Del Rev. 105:145–62.
  • Zhang, Y., X. Jiang, C. Qin, S. Cuevas, P. A. Jose, and I. Armando. 2016b. Dopamine D2 receptors’ effects on renal inflammation are mediated by regulation of PP2A function. Am. J. Physiol. Renal Physiol. 310:F128–F134.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.