106
Views
4
CrossRef citations to date
0
Altmetric
Articles

Relationship between viability and genotoxic effect of gamma rays delivered at different dose rates in somatic cells of Drosophila melanogaster

, , &

References

  • Abend, M., C. Badie, R. Quintens, R. Kriehuber, G. Manning, E. Macaeva, M. Macaevac, D. Njimad, S. Oskampe, S. Strunzg, et al. 2016. Examining radiation-induced in vivo and in vitro gene expression changes of the peripheral blood in different laboratories for biodosimetry purposes: First RENEB gene expression study. Radiat. Res. 185:109–23. doi:10.1667/RR14221.1.
  • Adams, M. D., S. E. Celniker, R. A. Holt, C. A. Evans, J. D. Gocayne, P. G. Amanatides, S. E. Scherer, P. W. Li, R. A. Hoskins, R. F. Galle, et al. 2000. The genome sequence of Drosophila melanogaster. Science 287:2185–95. doi:10.1126/science.287.5461.2185.
  • Alaraby, M., B. Annangi, R. Marcos, and A. Hernández. 2016. Drosophila melanogaster as a suitable in vivo model to determine potential side effects of nanomaterials: A review. J. Toxicol. Environ. Health B. 19:65–104. doi:10.1080/10937404.2016.1166466.
  • Amundson, S. A., R. A. Lee, C. A. Koch-Paiz, M. L. Bittner, P. Meltzer, J. M. Trent, and A. J. Fornace. 2003. Differential responses of stress genes to low dose-rate γ irradiation1 1 DOE Grant ER62683. Mol. Cancer. Res. 1:445–52.
  • Bedford, J. S., and J. B. Mitchell. 1973. Dose-rate effects in synchronous mammalian cells in culture. Radiat. Res. 54:316–27. doi:10.2307/3573709.
  • BEIR, National Research Council. 2006. Health risks from exposure to low levels of ionizing radiation: BEIR VII Phase 2. Washington, DC: The National Academies Press. doi:10.17226/11340.
  • Bong, J. J., Y. M. Kang, S. C. Shin, S. J. Choi, K. M. Lee, and H. S. Kim. 2013. Differential expression of thymic DNA repair genes in low-dose-rate irradiated AKR/J mice. J. Vet. Sci. 14:271–79. doi:10.4142/jvs.2013.14.3.271.
  • Brenner, D. J., R. Doll, D. T. Goodhead, E. J. Hall, C. E. Land, J. B. Little, J. H. Lubin, D. L. Preston, R. J. Preston, J. S. Puskin, et al. 2003. Cancer risks attributable to low doses of ionizing radiation: Assessing what we really know. Proc. Natl. Acad. Sci. USA. 100:13761–66. doi:10.1073/pnas.2235592100.
  • Brooks, A., D. Hoel, and J. Preston. 2016. The role of dose rate in radiation cancer risk: Evaluating the effect of dose rate at the molecular, cellular and tissue levels using key events in critical pathways following exposure to low LET radiation. Int. J. Radiat. Biol. 92:405–26. doi:10.1080/09553002.2016.1186301.
  • Brooks, A. L., R. Miick, R. L. Buschbom, M. K. Murphy, and M. A. Khan. 1995. The role of dose rate in the induction of micronuclei in deep-lung fibroblasts in vivo after exposure to cobalt-60 gamma rays. Radiat. Res. 144:114–18.
  • Collins, J. T. 2007. Image J for microscopy. Biotechniques 43:525–30. doi:10.2144/000112594.
  • Cruces, M. P., E. Pimentel, and S. Zimmering. 2003. Evidence suggesting that chlorophyllin (CHLN may act as an inhibitor or a promoter of genetic damage induced by chromium (VI) oxide (CrO3) in somatic cells of Drosophila). Mutat. Res 536:139–44. doi:10.1016/s1383-5718(03)00043-3.
  • de Andrade, H. H. R., M. L. Reguly, and M. Lehmann. 2004. Wing Somatic Mutation and Recombination test: Henderson D.S. (eds) Drosophila Cytogenetics Protocols. Vol 247 of Methods in Molecular Biology. Totowa: Humana Press.
  • de Toledo, S. M., N. Asaad, P. Venkatachalam, L. Li, R. W. Howell, D. R. Spitz, and E. I. Azzam. 2006. Adaptive responses to low-dose/low-dose-rate gamma rays in normal human fibroblasts: The role of growth architecture and oxidative metabolism. Radiat. Res. 166:849–57. doi:10.1667/RR0640.1.
  • Frei, H., and F. E. Würgler. 1988. Statistical methods to decide whether mutagenicity test data from Drosophila assays indicate a positive, negative, or inconclusive result. Mutat. Res./Environ. Mutagen. Related Subject. 203:297–308. doi:10.1016/0165-1161(88)90019-2.
  • Ghandhi, S. A., L. B. Smilenov, C. D. Elliston, M. Chowdhury, and S. A. Amundson. 2015. Radiation dose-rate effects on gene expression for human biodosimetry. BMC Med. Genom. 8:22–32. doi:10.1186/s12920-015-0097-x.
  • González, E., M. P. Cruces, E. Pimentel, and P. Sánchez. 2018. Evidence that the radioprotector effect of ascorbic acid depends on the radiation dose rate. Environ. Toxicol. Pharmacol. 62:210–14. doi:10.1016/j.etap.2018.07.015.
  • Graf, U., F. E. Wurgler, A. J. Katz, H. Frei, F. Juon, C. B. Hall, and P. G. Kale. 1984. Somatic mutation and recombination test in Drosophila melanogaster. Environ. Mutagen. 6:153–88. doi:10.1002/em.2860060206.
  • Hall, E. J., and A. J. Giaccia. 2012. Fractionated radiation and the dose-rate effect. Radiobiology for the Radiologist, 67–85. 7th ed. Philadelphia, PA: Lippincott Williams and Wilkins.
  • Ina, Y., and K. Sakai. 2004. Prolongation of life span associated with immunological modification by chronic low-dose-rate irradiation in MRL-lpr/lpr mice. Radiat Res 161:168–73. doi:10.1667/RR3120.
  • Ishizaki, K., Y. Hayashi, H. Nakamura, Y. Yasui, K. Komatsu, and A. Tachibana. 2004. No indication of p53 phosphorylation and few focus formation of phosphorylated H2AX suggest efficient repair of DNA damage during chronic low-dose-rate irradiation in human cells. J. Radiat. Res. 45:521–25. doi:10.1269/jrr.45.521.
  • Iushkova, E. A., V. G. Zaĭnullin, and O. A. Startseva. 2011. Evaluation of effects of gamma-irradiation at low doses on repair and meiotic recombination mutants of Drosophila melanogaster. Radiat. Biol. Radioecol 51:698–704.
  • Kam, W. W. Y., and R. B. Banati. 2013. Effects of ionizing radiation on mitochondria. Free Radic. Biol. Med. 65:607–19. doi:10.1016/j.freeradbiomed.2013.07.024.
  • Kim, C. S., K. M. Seong, B. S. Lee, I. K. Lee, K. H. Yang, J. Y. Kim, and S. Y. Nam. 2015. Chronic low-dose γ-irradiation of Drosophila melanogaster larvae induces gene expression changes and enhances locomotive behavior. J. Radiat. Res. 56:475–84. doi:10.1093/jrr/rru128.
  • Klebes, A., B. Biehs, F. Cifuentes, and T. B. Kornberg. 2002. Expression profiling of Drosophila imaginal discs. Genome Biol 3:research0038–1. doi:10.1186/gb-2002-3-8-research0038.
  • Koana, T., M. O. Okada, K. Ogura, H. Tsujimura, and K. Sakai. 2007. Reduction of background mutations by low-dose X irradiation of Drosophila spermatocytes at a low dose rate. Radiat. Res. 167:217–21.
  • Lecomte-Pradines, C., T. Hertel-Aas, C. Coutris, R. Gilbin, D. Oughton, and F. Alonzo. 2017. A dynamic energy-based model to analyze sublethal effects of chronic gamma irradiation in the nematode Caenorhabditis elegans. J. Toxicol. Environ. Health. A. 80:830–44. doi:10.1080/15287394.2017.1352194.
  • Marin, L. A., C. E. Smith, M. Y. Langston, D. Quashie, and L. E. Dillehay. 1991. Response of glioblastoma cell lines to low dose rate irradiation. Int. J. Radiat. Oncol. 21:397–402. doi:10.1016/0360-3016(91)90788-6.
  • Mitchell, J. B., J. S. Bedford, and S. M. Bailey. 1979. Dose-rate effects in plateau-phase cultures of S3 HeLa and V79 cells. Radiat. Res. 79:552–67.
  • Morgan, W. F., and W. J. Bair. 2013. Issues in low dose radiation biology: The controversy continues. A perspective. Radiat. Res. 179:501–10. doi:10.1667/RR3306.1.
  • Mosse, I. B. 2012. Genetic effects of ionizing radiation – Some questions with no answers. J. Environ. Radioact. 112:70–75. doi:10.1016/j.jenvrad.2012.05.009.
  • Olipitz, W., D. Wiktor-Brown, J. Shuga, B. Pang, J. McFaline, P. Lonkar, A. Thomas, J. T. Mutamba, J. S. Greenberger, L. D. Sampson, et al. 2012. Integrated molecular analysis indicates undetectable DNA damage in mice after continuous irradiation at ~400-fold natural background radiation. Environ. Health. Perspect. 120:1130–35. doi:10.1289/ehp.1104294.
  • Pandey, U. B., and C. D. Nichols. 2011. Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol. Rev. 63:411–36. doi:10.1124/pr.110.003293.
  • Paul, S., L. B. Smilenov, C. D. Elliston, and S. A. Amundson. 2015. Radiation dose-rate effects on gene expression in mouse biodosimetry model. Radiat. Res. 184:24–32. doi:10.1667/RR14044.1.
  • Pimentel, E., M. P. Cruces, and S. Zimmering. 2000. Evidence that chlorophyllin (CHLN) may behave as an inhibitor or a promoter of radiation-induced genetic damage in somatic cells of Drosophila. Mutat. Res. 472:71–74. doi:10.1016/s1383-5718(00)00125-x.
  • Ramel, C., H. Cederberg, J. Magnusson, E. Vogel, A. T. Natarajan, L. H. Mullender, J. M. Nivard, J. M. Parry, A. Leyson, M. A. Comendador, et al. 1996. Somatic recombination, gene amplification and cancer. Mutat. Res. 353:85–107. doi:10.1016/0027-5107(95)00243-x.
  • Russell, W. L., and E. M. Kelly. 1981. Specific-locus mutation frequencies in mouse stem-cell spermatogonia at very low radiation dose rates. Proc. Natl. Acad. Sci .USA 79:539–41. doi:10.1073/pnas.79.2.539.
  • Sakai, K., T. Nomura, and Y. Ina. 2006. Enhancement of bio-protective functions by low dose/dose-rate radiation. Dose Response 4:327–32. doi:10.2203/dose-response.06-115.Sakai.
  • Tanarro, S. A., and A. Tanarro. 2008. Diccionario Inglés-español sobre tecnología nuclear. 2nd ed. Madrid: Tecnatom.
  • Tang, F. R., W. K. Loke, and B. C. Khoo. 2016. Low-dose or low-dose-rate ionizing radiation–Induced bioeffects in animal models. J. Radiat. Res. 58:165–82.
  • Vidal, L. M., E. Pimentel, M. P. Cruces, and J. C. Sánchez-Meza. 2017. Cytotoxic and genotoxic actions of Casiopeina III-Ea (Cas III-Ea) in somatic and germ cells of Drosophila melanogaster. J. Toxicol. Environ. Health. A 80:365–73. doi:10.1080/15287394.2017.1326072.
  • Vidal, L. M., E. Pimentel, M. P. Cruces, and J. C. Sánchez-Meza. 2018. Different radiation dose rate as radioprotection and the cross effect with chromium using in vivo somatic cells of Drosophila. Environ. Toxicol. Pharmacol 63:16–20. doi:10.1016/j.etap.2018.08.008.
  • Vogel, E. W., U. Graf, H. J. Frei, and M. M. Nivard. 1999. The results of assays in Drosophila as indicators of exposure to carcinogens. IARC. Sci. Publ. 146:427.
  • Würgler, F. E., F. H. Sobels, and E. W. Vogel. 1977. Drosophila as assay system for detecting genetic changes. Handbook of mutagenicity test procedures, 335–73. Amsterdam: Elsevier.
  • Zhang, Z., H. Zhang, F. Liu, M. Qiu, and J. Tong. 2010. Effects of gamma radiation on bone marrow stromal cells. J. Toxicol. Environ. Health. A 73:514–19. doi:10.1080/15287390903523477.
  • Zhikrevetskaya, S., D. Peregudova, A. Danilov, E. Plyusnina, G. Krasnov, A. Dmitriev, A. Kudryavtseva, M. Shaposhnikov, and A. Moskalev. 2015. Effect of low doses (5–40 cGy) of gamma-irradiation on lifespan and stress-related genes expression profile in Drosophila melanogaster. Plos One 10:e0133840. doi:10.1371/journal.pone.0133840.
  • Zimmering, S., M. P. Cruces, E. Pimentel, C. Arceo, G. Carrasco, and O. Olvera. 1997. On the recovery of single spots with the flr phenotype in the wing spot test. Drosophila. Mutat. Res. 379:77–82. doi:10.1016/S0027-5107(97)00110-3.
  • Zimmering, S., O. Olvera, M. E. Hernandez, M. P. Cruces, C. Arceo, and E. Pimentel. 1990. Evidence for a radioprotective effect of chlorophyllin in Drosophila. Mutat Res. 245:47–49. doi:10.1016/0165-7992(90)90024-E.
  • Zuo, Y.-H., X.-H. Dang, H.-F. Zhang, J.-G. Liu, Z.-K. Duan, Z.-W. Wang, and J. Tong. 2012. Genomic instability induced by ionizing radiation in human hepatocytes. J. Toxicol. Environ. Health. A 75:700–06. doi:10.1080/15287394.2012.690087.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.