589
Views
18
CrossRef citations to date
0
Altmetric
Articles

3D printing of musculoskeletal tissues: impact on safety and health at work

, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Afshar-Mohajer, N., C. Y. Wu, T. Ladun, D. A. Rajon, and Y. Huang. 2015. Characterization of particulate matters and total VOC emissions from a binder jetting 3D printer. Build. Environ. 93:293–301. doi:10.1016/j.buildenv.2015.07.013.
  • Andujar, P., A. Simon-Deckers, F. Galateau-Salle, B. Fayard, G. Beaune, B. Clin, M. A. Billon-Galland, O. Durupthy, J. C. Pairon, J. Doucet, et al. 2014. Role of metal oxide nanoparticles in histopathological changes observed in the lungs of welders. Part. Fibre Toxicol. 1:23. doi:10.1186/1743-8977-11-23.
  • Ataee, A., Y. Li, D. Fraser, G. Song, and C. Wen. 2018. Anisotropic Ti-6Al-4V gyroid scaffolds manufactured by electron beam melting (EBM) for bone implant applications. Mater Des 137:1–480. doi:10.1016/j.matdes.2017.10.040.
  • Azimi, P., D. Zhao, C. Pouzet, N. E. Crain, and B. Stephens. 2016. Emissions of ultrafine particles and volatile organic compounds from commercially available desktop three-dimensional printers with multiple filaments. Sci. Technol. 50:1260–68. doi:10.1021/acs.est.5b04983.
  • Bakand, S., and A. Hayes. 2016. Toxicological considerations, toxicity assessment, and risk management of inhaled nanoparticles. Int. J. Mol. Sci. 17:E929. doi:10.3390/ijms17060929.
  • Bandyopadhyay, A., B. V. Krishna, W. Xue, and S. Bose. 2009. Application of laser engineered net shaping (LENS) to manufacture porous and functionally graded structures for load bearing implants. J. Mater. Sci. Mater. Med. 20:29–34. doi:10.1007/s10856-008-3478-2.
  • Bose, S., S. Vahabzadeh, and A. Bandyopadhyay. 2013. Bone tissue engineering using 3D printing. Bull. Mater. Today. 16:496–504. doi:10.1016/j.mattod.2013.11.017.
  • Bours, J., B. Adzima, S. Gladwin, J. Cabral, and S. Mau. 2017. Addressing hazardous implications of additive manufacturing: Complementing life cycle assessment with a framework for evaluating direct human health and environmental impacts. J. Ind. Ecol. 21:S25–S36. doi:10.1111/jiec.12587.
  • Bradbrook, S., M. Duckworth, P. Ellwood, M. Miedzinski, and J. Reynolds. 2013. Green jobs and occupational safety and health: Foresight on new and emerging risks associated with new technologies by 2020. Report. European Agency for Safety and Health at Work (EU-OSHA), BeIgium, SSN 1831-9343.
  • Brown, T. D., P. D. Dalton, and D. W. Hutmacher. 2016. Melt electrospinning today: An opportune time for an emerging polymer process. Prog. Polym. Sci. 56:116–66. doi:10.1016/j.progpolymsci.2016.01.001.
  • Byrley, P., B. J. Gorge, W. K. Boyes, and K. Rogers. 2019. Particle emissions from fused deposition modeling 3D printers: Evaluation and meta-analysis. Sci. Total Environ. 655:395–407. doi:10.1016/j.scitotenv.2018.11.070.
  • Čapek, J., M. Machová, M. Fousová, J. Kubásek, D. Vojtěch, J. Fojt, E. Jablonská, J. Lipov, and T. Ruml. 2016. Highly porous, low elastic modulus 316L stainless steel scaffold prepared by selective laser melting. Mater. Sci. Eng. C. 69:631–39. doi:10.1016/j.msec.2016.07.027.
  • Chan, F. L., R. House, I. Kudla, J. C. Lipszyc, N. Rajaram, and S. M. Tarlo. 2018. Health survey of employees regularly using 3D printers. Occup. Med. 68:211–14. doi:10.1093/occmed/kqy042.
  • Chen, C. H., M. Y. Lee, V. B. Shyu, Y. C. Chen, C. T. Chen, and J. P. Chen. 2014. Surface modification of polycaprolactone scaffolds fabricated via selective laser sintering for cartilage tissue engineering. Mater. Sci. Eng. C. 40:389–97. doi:10.1016/j.msec.2014.04.029.
  • Commission Recommendation of 18th October 2011 on the definition of nanomaterial. Text with European Economic Area (EEA) relevance.
  • Consolidated version of the Treaty on the Functioning of the European Union-Protocols-Annexes-Declarations annexed to the Final Act of the Intergovernmental Conference which adopted the Treaty of Lisbon, signed on 13 December 2007.
  • Creytens, K., L. Gilissen, S. Huygens, and A. Goossens. 2017. A new application for epoxy resins resulting in occupational allergic contact dermatitis: The three-dimensional printing industry. Contact Derm. 77:325–51. doi:10.1111/cod.12819.
  • Cui, X., G. Gao, T. Yonezawa, and G. Dai. 2014. Human cartilage tissue fabrication using three-dimensional inkjet printing technology. J. Vis. Exp. 88: e51294.
  • Current Intelligence Bulletin 60 Interim Guidance for Medical Screening and Hazard Surveillance for Workers Potentially Exposed to Engineered Nanoparticles. 2009 DHHS (NIOSH) Publication No. 2009-116.
  • Dalton, P. D. 2017. Melt electro-writing with additive manufacturing principles. Curr. Opin. Biomed. Eng. 2:49–57. doi:10.1016/j.cobme.2017.05.007.
  • Daly, A. C., G. M. Cunniffe, B. N. Sathy, O. Jeon, E. Alsberg, and D. J. Kelly. 2016. 3D bioprinting of developmentally inspired templates for whole bone organ engineering. Adv. Health. Mater. 5:2353–62. doi:10.1002/adhm.201600182.
  • De Ruijter, M., A. Ribeiro, I. Dokter, M. Castilho, and J. Malda. 2019. Simultaneous micropatterning of fibrous meshes and bioinks for the fabrication of living tissue constructs. Adv. Healthcare Mater. (8):1800418. doi:10.1002/adhm.201800418.
  • Dean, D., J. Wallace, A. Siblani, M. O. Wang, K. Kim, A. G. Mikos, and J. P. Fisher. 2012. Continuous digital light processing (cDLP): Highly accurate additive manufacturing of tissue engineered bone scaffolds. Virtual Phys. Prototyp. 7:13–24. doi:10.1080/17452759.2012.673152.
  • Directive 1997/23/EC of the European Parliament and of the Council of 29 May 1997 on the approximation of the laws of the Member States concerning pressure equipment.
  • Directive 1998/24/EC of 7 April 1998 on the protection of the health and safety of workers from the risks related to chemical agents at work (fourteenth individual Directive within the meaning of Article 16 (1)of Directive 89/391/EEC).
  • Directive 2000/54/EC-Biological agents at work of the European Parliament and of the Council of 18 September 2000 on the protection of workers from risks related to exposure to biological agents at work (seventh individual directive within the meaning of Article 16 (1)of Directive 89/391/EEC), OJ L 262.
  • Directive 2002/49/EC of the European Parliament and of the Council of 25 June 2002 relating to the assessment and management of environmental noise - Declaration by the Commission in the Conciliation Committee on the Directive relating to the assessment and management of environmental noise.
  • Directive 2006/25/EC of the European Parliament and of the Council of 5 April 2006 on the minimum health and safety requirements regarding the exposure of workers to risks arising from physical agents (artificial optical radiation) (19th individual Directive within the meaning of Article 16 (1)of Directive 89/391/EEC).
  • Directive 2006/42/EC of the European Parliament and of the Council of 17 May 2006 on machinery, and amending Directive 95/16/EC.
  • Directive 2013/35/EU-electromagnetic fields of 26 June 2013 on the minimum health and safety requirements regarding the exposure of workers to the risks arising from physical agents (electromagnetic fields) (20th individual Directive within the meaning of Article 16 (1)of Directive 89/391/EEC) and repealing Directive 2004/40/EC.
  • Directive 2013/59/Euratom- protection against ionizing radiation of 5 December 2013 laying down basic safety standards for protection against the dangers arising from exposure to ionizing radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom.
  • Directive 2014/35/EU of the European Parliament and of the Council of 26 February 2014 on the harmonization of the laws of the Member States relating to the making available on the market of electrical equipment designed for use within certain voltage limits.
  • Du, D., T. Asaoka, T. Ushida, and K. S. Furukawa. 2014. Fabrication and perfusion culture of anatomically shaped artificial bone using stereolithography. Biofabrication 6:45002. doi:10.1088/1758-5082/6/4/045002.
  • Du, Y., H. Liu, Q. Yang, S. Wang, J. Wang, J. Ma, I. Noh, A. G. Mikos, and S. Zhang. 2017. Selective laser sintering scaffold with hierarchical architecture and gradient composition for osteochondral repair in rabbits. Biomaterials 137:37–48. doi:10.1016/j.biomaterials.2017.05.021.
  • Elder, A., R. Gelein, V. Silva, T. Feikert, L. Opanashuk, J. Carter, R. Potter, A. Maynard, Y. Ito, J. Finkelstein, et al. 2006. Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ. Health. Perspect. 114:1172–78. doi:10.1289/ehp.9030.
  • EU general risk assessment methodology (Action 5 of Multi-Annual Action Plan for the surveillance of products in the EU (COM(2013)76). 2016. European Commission.
  • Filardo, G., M. Petretta, C. Cavallo, L. Roseti, S. Durante, U. Albisinni, and B. Grigolo. 2019. Patient-specific meniscus prototype based on 3D bioprinting of human cell-laden scaffold. Bone Joint Res 8:101–06. doi:10.1302/2046-3758.82.BJR-2018-0134.R1.
  • Gao, C., C. Wang, H. Jin, Z. Wang, Z. Li, C. Shi, Y. Leng, F. Yang, H. Liu, and J. Wang. 2018. Additive manufacturing technique-designed metallic porous implants for clinical application in orthopedics. RSC Adv 8:25210–27. doi:10.1039/C8RA04815K.
  • Gao, G., T. Yonezawa, K. Hubbell, G. Dai, and X. Cui. 2015. Inkjet-bioprinted acrylated peptides and PEG hydrogel with human mesenchymal stem cells promote robust bone and cartilage formation with minimal printhead clogging. Biotechnol. J. 10:1568–77. doi:10.1002/biot.201400635.
  • Gibbs, D. M. R., M. Vaezi, S. Yang, and R. O. C. Oreffo. 2014. Hope versus hype: What can additive manufacturing realistically offer trauma and orthopedic surgery? Regen. Med. 9:535–49. doi:10.2217/rme.14.20.
  • Graham, A. D., S. N. Olof, M. J. Burke, J. P. K. Armstrong, E. A. Mikhailova, J. G. Nicholson, S. J. Box, F. G. Szele, A. W. Perriman, and H. Bayley. 2017. High-resolution patterned cellular constructs by droplet-based 3d printing. Sci. Rep. 7:7004. doi:10.1038/s41598-017-06358-x.
  • Gruene, M., M. Pflaum, C. Hess, S. Diamantouros, S. Schlie, A. Deiwick, L. Koch, M. Wilhelmi, S. Jockenhoevel, A. Haverich, et al. 2011. Laser printing of three-dimensional multicellular arrays for swtudies of cell-cell and cell-environment interactions. Tissue Eng. C. 1:973–82. doi:10.1089/ten.tec.2011.0185.
  • Gu, B. K., D. J. Choi, S. J. Park, M. S. Kim, C. M. Kang, and C. H. Kim. 2016. 3-Dimensional bioprinting for tissue engineering applications. Biomater. Res. 20:12. doi:10.1186/s40824-016-0058-2.
  • Gudapati, H., M. Dey, and I. Ozbolat. 2016. A comprehensive review on droplet-based bioprinting: Past, present and future. Biomaterials 102:20–42. doi:10.1016/j.biomaterials.2016.06.012.
  • Guidance on the protection of the health and safety of workers from the potential risks related to nanomaterials at work. Employment, Social Affairs and Inclusion. European Commission. 2013.
  • Guillaume, O., M. A. Geven, C. M. Sprecher, V. A. Stadelmann, D. W. Grijpma, T. T. Tang, L. Qin, Y. Lai, M. Alini, J. D. de Bruijn, et al. 2017. Surface-enrichment with hydroxyapatite nanoparticles in stereolithography-fabricated composite polymer scaffolds promotes bone repair. Acta Biomater 54:386–98. doi:10.1016/j.actbio.2017.03.006.
  • Gwinn, R. M., and V. Vallyathan. 2006. Nanoparticles: Health effects-pros and cons. Environ. Health Perspect. 114:1818–25. doi:10.1289/ehp.8871.
  • Hierarchy of Controls. 2019 July 12. U.S. national institute for occupational safety and health. https://www.cdc.gov/niosh/topics/hierarchy/default.html.
  • Hochleitner, G., F. Chen, C. Blum, P. D. Dalton, B. Amsden, and J. Groll. 2018. Melt electrowriting below the critical translation speed to fabricate crimped elastomer scaffolds with non-linear extension behaviour mimicking that of ligaments and tendons. Acta Biomater 72:110–20. doi:10.1016/j.actbio.2018.03.023.
  • Hsieh, Y. H., B. Y. Shen, Y. H. Wang, B. Lin, H. M. Lee, and M. F. Hsieh. 2018. Healing of osteochondral defects implanted with biomimetic scaffolds of poly(ε-caprolactone)/hydroxyapatite and glycidyl-methacrylate-modified hyaluronic acid in a minipig. Int. J Mol. Sci. 19:1125. doi:10.3390/ijms19041125.
  • Huang, Y., M. C. Leu, J. Mazumder, and A. Donmez. 2015. Additive manufacturing: Current state, future potential, gaps and needs, and recommendations. J. Manuf. Sci. 137:014001–1. doi:10.1115/1.4028725.
  • Hubbard, D., and D. Evans. 2010. Problems with scoring methods and ordinal scales in risk assessment. IBM. J. Res. Dev. 54:2–10. doi:10.1147/JRD.2010.2042914.
  • ISO/ASTM 52900:2015 Standard Terminology for Additive Manufacturing -General Principles-Terminology-Section 2.2 Process categories.
  • Jeong, C. G., and A. Atala. 2015. 3D printing and biofabrication for load bearing tissue engineering. Adv. Exp. Med. Biol. 881:3–14. doi:10.1007/978-3-319-22345-2_1.
  • Jordahl, J. H., L. Solorio, H. Sun, S. Ramcharan, C. B. Teeple, H. R. Haley, K. J. Lee, T. W. Eyster, G. D. Luker, P. H. Krebsbach, et al. 2018. 3D jet writing: Functional microtissues based on tessellated scaffold architectures. Adv. Mater. 30:1707196. doi:10.1002/adma.201707196.
  • Keriquel, V., H. Oliveira, M. Rémy, S. Ziane, S. Delmond, B. Rousseau, S. Rey, S. Catros, J. Amédée, F. Guillemot, et al. 2017. In situ printing of mesenchymal stromal cells, by laser-assisted bioprinting, for in vivo bone regeneration applications. Sci. Rep. 7:1778. doi:10.1038/s41598-017-01914-x.
  • Kermanizadeh, A., I. Gosens, L. MacCalman, H. Johnston, P. H. Danielsen, N. R. Jacobsen, A.-G. Lenz, T. Fernandes, R. P. F. Schins, F. R. Cassee, et al. 2016. A multilaboratory toxicological assessment of a panel of 10 engineered nanomaterials to human health- ENPRA Project-the highlights, limitations, and current and future challenges. J Toxicol Environ Health B 19:1–28. doi:10.1080/10937404.2015.1126210.
  • Kim, Y., C. Yoon, S. Ham, J. Park, S. Kim, O. Kwon, and P. J. Tsai. 2015. Emissions of nanoparticles and gaseous material from 3d printer operation. Environ. Sci. Technol. 49:12044–53. doi:10.1021/acs.est.5b02805.
  • Mellin, P., C. Jönsson, M. Åkermo, P. Fernberg, E. Nordenberg, H. Brodin, and A. Strondl. 2016. Nano-sized by-products from metal 3D printing, composite manufacturing and fabric production. J. Clean. Prod. 139:1224–33. doi:10.1016/j.jclepro.2016.08.141.
  • Mendes, L., A. Kangas, K. Kukko, B. Mølgaard, A. Säämänen, T. Kanerva, I. F. Ituarte, M. Huhtiniemi, H. Stockmann‐Juvala, J. Partanen, et al. 2017. Characterization of emissions from a desktop 3D printer. J. Ind. Ecol 21:S94–S106. doi:10.1111/jiec.2017.21.issue-S1.
  • Moran, C. J., C. Pascual-Garrido, S. Chubinskaya, H. G. Potter, R. F. Warren, B. J. Cole, and S. A. Rodeo. 2014. Restoration of articular cartilage. J. Bone Jt. Surg. 96:336–44. doi:10.2106/JBJS.L.01329.
  • Mouser, V. H. M., A. Abbadessa, R. Levato, W. E. Hennink, T. Vermonden, D. Gawlitta, and J. Malda. 2017. Development of a thermosensitive HAMA-containing bio-ink for the fabrication of composite cartilage repair constructs. Biofabrication 9:015026.
  • Mulford, J. S., S. Babazadeh, and N. Mackay. 2016. Three-dimensional printing in orthopedic surgery: Review of current and future applications. ANZ J. Surg. 86:648–53. doi:10.1111/ans.13533.
  • Murphy, S. V., and A. Atala. 2014. 3D bioprinting of tissues and organs. Nat. Biotechnol. 32:773–85. doi:10.1038/nbt.2958.
  • Namkung, E., and B. E. Rittmann. 1987. Estimating volatile organic compound emissions from publicly owned treatment works. J. Water Pollut. Control Fed. 59:670–78.
  • National Institute for Occupational Safety and Health (NIOSH) method according to UNI EN 1005-2 and ISO 11228-1 standard series 1993.
  • Navarro, M., A. Michiardi, O. Castaño, and J. A. Planell. 2008. Biomaterials in orthopaedics. J. R. Soc. Interface. 5:1137–58. doi:10.1098/rsif.2008.0151.
  • Nowicki, M. A., N. J. Castro, M. W. Plesniak, and L. G. Zhang. 2016. 3D printing of novel osteochondral scaffolds with graded microstructure. Nanotechnology 27:414001. doi:10.1088/0957-4484/27/36/365202.
  • Nurmatov, U. B., N. Tagiyeva, S. Semple, G. Devereux, and A. Sheikh. 2015. Volatile organic compounds and risk of asthma and allergy: A systematic review. Eur. Respir. Rev. 24:92–101. doi:10.1183/09059180.00000714.
  • Oberdörster, G. 2001. Pulmonary effects of inhaled ultrafine particles. Int. Arch. Occup. Environ. Health. 74:1–8.
  • Oberdörster, G., E. Oberdörster, and J. Oberdörster. 2005. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 113:823–39. doi:10.1289/ehp.7339.
  • Occupational Repetitive Action (OCRA) index according to standard series EN 1005 and ISO11228-1-2-3 2007.
  • OHSAS 18001:2007, Occupational health and safety management systems - Requirements. 2007. Occupational health and safety assessment series ICS 03.100.01; 13.100. OHSAS Project Group.
  • Pappas, G. P., R. J. Herbert, W. Henderson, J. Koenig, B. Stover, and S. Barnhart. 2000. The respiratory effects of volatile organic compounds. Int. J. Occup. Environ. Health. 6:1–8. doi:10.1179/oeh.2000.6.1.1.
  • Peixe, T. S., E. de Souza Nascimento, K. L. Schofield, A. S. A. Arcuri, and R. P. Bulcão. 2015. Nanotoxicology and exposure in the occupational setting. Occup. Dis. Environ. Med. 3:35–48. doi:10.4236/odem.2015.33005.
  • Pillai, M. M., J. Gopinathan, R. Selvakumar, and A. Bhattacharyya. 2018. Human knee meniscus regeneration strategies: A review on recent advances. Curr. Osteoporos. Rep. 16:224–35. doi:10.1007/s11914-018-0436-x.
  • Position Statement on emerging and newly identified health risks to be drawn to the attention of the European Commission. 2014. Scientific committee on emerging and newly-identified health risks SCENIHR. Publication office of the EU.
  • Rao, C., G. Fu, P. Zhao, N. Sharmin, H. Gu, and J. Fu. 2017. Capturing PM 2.5 emissions from 3d printing via nanofiber-based air filter. Sci. Rep. 7:10366. doi:10.1038/s41598-017-10995-7.
  • Risk Management for Replication Devices. National Institute of Standard Technology (NIST) Internal Report (NISTIR) 8023. 2015.
  • Roseti, L., C. Cavallo, G. Desando, V. Parisi, M. Petretta, I. Bartolotti, and B. Grigolo. 2018. Three-dimensional bioprinting of cartilage by the use of stem cells: A strategy to improve regeneration. Materials 11 (pii):E 1749. doi:10.3390/ma11081451.
  • Roseti, L., V. Parisi, M. Petretta, C. Cavallo, G. Desando, I. Bartolotti, and B. Grigolo. 2017. Scaffolds for bone tissue engineering: State of the art and new perspectives. Mater. Sci. Eng. C Mater. Biol. Appl. 78:1246–62. doi:10.1016/j.msec.2017.05.017.
  • Roy, R., S. Kumar, A. Tripathi, M. Das, and P. D. Dwivedi. 2013. Interactive threats of nanoparticles to the biological system. Immunol. Lett. 158:79–87. doi:10.1016/j.imlet.2013.11.019.
  • Sabatino, R. 2014. Metodologia per la valutazione dei rischi–Inail. Last Modified Jul 30, 2014. Accessed March 29, 2019. https://www.certifico.com/sicurezza-lavoro/documenti-sicurezza/64-documenti-enti/589-metodologia-per-la-valutazione-dei-rischi-inail.
  • Schemitsch, E. H. 2017. Size matters: Defining critical in bone defect size! J. Orthop. Trauma 31:S20–S22. doi:10.1097/BOT.0000000000000978.
  • Schubert, C., M. C. van Langeveld, and L. A. Donoso. 2014. Innovations in 3D printing: A 3D overview from optics to organs. Br. J. Ophthalmol. 98:159–61. doi:10.1136/bjophthalmol-2013-304446.
  • Seitz, H., W. Rieder, S. Irsen, B. Leukers, and C. J. Tille. 2005. Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. Biomed. Mater. Res. B Appl. Biomater. 74:782–88. doi:10.1002/jbm.b.30291.
  • Sharma, A., G. Desando, M. Petretta, S. Chawla, I. Bartolotti, C. Manferdini, F. Paolella, E. Gabusi, D. Trucco, S. Ghosh, et al. 2019. Investigating the role of sustained calcium release in silk-gelatin- based three-dimensional bioprinted constructs for enhancing the osteogenic ACS Biomater. Sci. Eng 5:1518–33. differentiation of human bone marrow derived mesenchymal stromal cells.
  • Sing, S. L., J. An, W. Y. Yeong, and F. E. Wiria. 2016. Laser and electron‐beam powder‐bed additive manufacturing of metallic implants: A review on processes, materials and designs. J. Orthop. Res. 34:369–85. doi:10.1002/jor.23075.
  • Stefaniak, A. B., L. N. Bowers, A. K. Knepp, T. P. Luxton, D. M. Peloquin, E. J. Baumann, J. E. Ham, J. R. Wells, A. R. Johnson, R. F. LeBouf, et al. 2019a. Particle and vapor emissions from VAT photopolymerization desktop-scale 3-dimensional printers. J. Occup. Environ. Hyg. 16:1–13. doi:10.1080/15459624.2019.1612068.
  • Stefaniak, A. B., A. R. Johnson, S. Du Preez, D. R. Hammond, J. R. Wells, J. E. Ham, R. F. LeBouf, S. B. Martin Jr., M. G. Duling, L. N. Bowers, et al. 2019b. Insights into emissions and exposures from use of industrial-scale additive manufacturing machines. Saf. Health Work 10:229–36. doi:10.1016/j.shaw.2018.10.003.
  • Stefaniak, A. B., R. F. LeBouf, M. G. Duling, J. Yi, A. B. Abukabda, C. R. McBride, and T. R. Nurkiewicz. 2017. Inhalation exposure to three-dimensional printer emissions stimulates acute hypertension and microvascular dysfunction. Toxicol. Appl. Pharmacol. 335:1–5. doi:10.1016/j.taap.2017.09.016.
  • Steinle, P. 2016. Characterization of emissions from a desktop 3D printer and indoor air measurements in office settings. J. Occup. Environ. Hyg. 13:121–32. doi:10.1080/15459624.2015.1091957.
  • Stephens, B., P. Azimi, Z. El Orch, and T. Ramos. 2013. Ultrafine particle emissions from desktop 3D printers. Atmos. Environ. 79:334–39. doi:10.1016/j.atmosenv.2013.06.050.
  • Tack, P., J. Victor, P. Gemmel, and L. Annemans. 2016. 3D-printing techniques in a medical setting: A systematic literature review. BioMed. Eng. OnLine. 15:115. doi:10.1186/s12938-016-0236-4.
  • Tappa, K., and U. Jammalamadaka. 2018. Novel biomaterials used in medical 3D printing techniques. J. Funct. Biomater. 9:17. doi:10.3390/jfb9010017.
  • Trombetta, R., J. A. Inzana, E. M. Schwarz, S. L. Kates, and H. A. Awad. 2016. 3D Printing of calcium phosphate ceramics for bone tissue engineering and drug delivery. Ann. Biomed. Eng. 45:23–44. doi:10.1007/s10439-016-1678-3.
  • Trout, D. B., and P. A. Schulte. 2010. Medical surveillance, exposure registries, and epidemiologic research for workers exposed to nanomaterials. Toxicology 269:128–35. doi:10.1016/j.tox.2009.12.006.
  • Väisänen, A. J. K., M. Hyttinen, S. Ylönen, and L. Alonen. 2019. Occupational exposure to gaseous and particulate contaminants originating from additive manufacturing of liquid, powdered and filament plastic materials and related post-processes. J. Occup. Environ. Hyg. 16:258–71. doi:10.1080/15459624.2018.1557784.
  • Varady, N. H., and A. J. Grodzinsky. 2016. Osteoarthritis year in review 2015: Mechanics. Osteoarthr. Cartil. 24:27–35. doi:10.1016/j.joca.2015.08.018.
  • Ventola, C. L. 2014. Medical applications for 3D printing: Current and projected uses. Pharmacol. Ther. 39:704–11.
  • Xiong, R., Z. Zhang, W. Chai, Y. Huang, and D. B. Chrisey. 2015. Free form drop-on-demand laser printing of 3D alginate and cellular constructs. Biofabrication 7:045011. doi:10.1088/1758-5090/7/4/045011.
  • Yang, Y., G. Wang, H. Liang, C. Gao, S. Peng, L. Shen, and C. Shuai. 2018. Additive manufacturing of bone scaffolds. Int. J. Bioprint 5:148. doi:10.18063/ijb.v5i1.148.
  • Yeo, M., and G. H. Kim. 2018. Anisotropically aligned cell-laden nanofibrous bundle fabricated via cell electrospinning to regenerate skeletal muscle tissue. Small 14:1803491. doi:10.1002/smll.v14.48.
  • Yi, J., R. F. LeBouf, M. G. Duling, T. Nurkiewicz, B. T. Chen, D. Schwegler-Berry, M. A. Virji, and A. B. Stefaniak. 2016. Emission of particulate matter from a desktop three-dimensional (3D) printer. J. Toxicol. Environ. Health A 79:453–65. doi:10.1080/15287394.2016.1166467.
  • Zhu, W., H. Cui, B. Boualam, F. Masood, E. Flynn, R. D. Rao, Z. Y. Zhang, and L. G. Zhang. 2018. 3D bioprinting mesenchymal stem cell-laden construct with core-shell nanospheres for cartilage tissue engineering. Nanotechnology 29:185101. doi:10.1088/1361-6528/aaafa1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.