263
Views
11
CrossRef citations to date
0
Altmetric
Articles

Anti-hyperlipidemic effects of Campomanesia xanthocarpa aqueous extract and its modulation on oxidative stress and genomic instability in Wistar rats

, , , , , , , , , , & show all

References

  • Bahadoran, Z., P. Mirmiran, and F. Azizi. 2013. Dietary polyphenols as potential nutraceuticals in management of diabetes: A review. J. Diabetes Metab. Disord. 12:43. doi:10.1186/2251-6581-12-43.
  • Bahmani, M., M. Mirhoseini, H. Shirzad, M. Sedighi, N. Shahinfard, and M. Rafieian-Kopaei. 2015. A review on promising natural agents effective on hyperlipidemia. J. Evid. Based Complementary Altern. Med. 20:228–38. doi:10.1177/2156587214568457.
  • Baldissera, M. D., C. F. Souza, T. H. Grando, P. H. Doleski, A. A. Boligon, L. M. Stefani, and S. G. Monteiro. 2017. Hypolipidemic effect of β-caryophyllene to treat hyperlipidemic rats. Naunyn Schmiedebergs Arch. Pharmacol. 390:215–23.
  • Ballvé, A. C., N. C. S. Siqueira, L. A. Mentz, G. A. B. Silva, and K. F. D. José. 1995. Plantas medicinais de uso popular. In Atlas Farmacognóstico. 1st. ed. Canoas: Editora da ULBRA.
  • Bhurosy, T., and R. Jeewon. 2014. Overweight and obesity epidemic in developing countries: A problem with diet, physical activity, or socioeconomic status? Sci. World J. 2014:964236. doi:10.1155/2014/964236.
  • Biavatti, M. W., C. Farias, F. Curtius, L. M. Brasil, S. Hort, L. Schuster, S. N. Leite, and S. R. Prado. 2004. Preliminary studies on Campomanesia xanthocarpa (Berg.) and Cuphea carthagenensis (Jacq.) J.F. Macbr. aqueous extract: Weight control and biochemical parameters. J. Ethnopharmacol. 93:385–89. doi:10.1016/j.jep.2004.04.015.
  • Boveris, A., and B. Chance. 1973. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem. J. 134:707–16. doi:10.1042/bj1340707.
  • Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–54. doi:10.1016/0003-2697(76)90527-3.
  • Buege, J. A., and S. D. Aust. 1978. Microsomal lipid peroxidation. Meth. Enzymol. 52:302–10.
  • Cardozo, C. M. L., A. C. Inada, G. Marcelino, P. S. Figueiredo, D. G. Arakaki, P. A. Hiane, C. A. L. Cardoso, R. C. A. Guimarães, and K. C. Freitas. 2018. Therapeutic potential of Brazilian Cerrado Campomanesia species on metabolic dysfunctions. Molecules. 23 article ID E2336. doi:10.3390/molecules23092336.
  • Catapano, A. L., I. Graham, G. De Backer, O. Wiklund, M. J. Chapman, H. Drexel, A. W. Hoes, C. S. Jennings, U. Landmesser, T. R. Pedersen, et al. 2016. ESC scientific document group. 2016 ESC/EAS guidelines for the management of dyslipidaemias. Eur. Heart J. 37:2999–3058. doi:10.1093/eurheartj/ehw272.
  • Chao, P. C., C. C. Hsu, and M. C. Yin. 2009. Anti-inflammatory and anti-coagulatory activities of caffeic acid and ellagic acid in cardiac tissue of diabetic mice. Nutr. Metab. (Lond). 6:33. doi:10.1186/1743-7075-6-33.
  • de Oliveira, N. C., M. S. Sarmento, E. A. Nunes, C. M. Porto, D. P. Rosa, S. R. Bona, G. Rodrigues, N. P. Marroni, P. Pereira, J. N. Picada, et al. 2012. Rosmarinic acid as a protective agent against genotoxicity of ethanol in mice. Food Chem. Toxicol. 50:1208–14. doi:10.1016/j.fct.2012.01.028.
  • de Sousa, J. A., L. da Silva Prado, B. L. Alderete, F. B. M. Boaretto, M. C. Allgayer, F. M. Miguel, J. T. de Sousa, N. P. Marroni, M. L. B. Lemes, D. S. Correa, et al. 2019. Toxicological aspects of Campomanesia xanthocarpa Berg. associated with its phytochemical profile. J. Toxicol. Environ. Health Part A 82:62–74. doi:10.1080/15287394.2018.1562392.
  • de Sousa, J. A., P. Pereira, M. D. C. Allgayer, N. P. Marroni, A. de Barros Falcão Ferraz, and J. N. Picada. 2017. Evaluation of DNA damage in Wistar rat tissues with hyperlipidemia induced by tyloxapol. Exp. Mol. Pathol. 103:51–55. doi:10.1016/j.yexmp.2017.06.009.
  • Ference, B. A., and N. Mahajan. 2013. The role of early LDL lowering to prevent the onset of atherosclerotic disease. Curr. Atheroscler. Rep. 15:312. doi:10.1007/s11883-013-0312-1.
  • Gnoni, G. V., G. Paglialonga, and L. Siculella. 2009. Quercetin inhibits fatty acid and triacylglycerol synthesis in rat-liver cells. Eur. J. Clin. Invest. 39:761–68. doi:10.1111/eci.2009.39.issue-9.
  • Govaerts, R., N. Sobral, P. Ashton, F. Barrie, B. K. Holst, L. L. Landrum, K. Matsumoto, F. Fernanda Mazine, E. Nic Lughadha, C. Proença, et al. 2008. World checklist of Myrtaceae: 1-455. London: Kew Publishing, Royal Botanic Gardens, Kew.
  • Harnafi, H., H. Bouanani Nel, M. Aziz, H. Serghini Caid, N. Ghalim, and S. Amrani. 2007. The hypolipidaemic activity of aqueous Erica multiflora flowers extract in Triton WR-1339 induced hyperlipidaemic rats: A comparison with fenofibrate. J. Ethnopharmacol. 109:156–60. doi:10.1016/j.jep.2006.09.017.
  • Hasani-Ranjbar, S., N. Nayebi, L. Moradi, A. Mehri, B. Larijani, and M. Abdollahi. 2010. The efficacy and safety of herbal medicines used in the treatment of hyperlipidemia; A systematic review. Curr. Pharm. Design 16:2935–47. doi:10.2174/138161210793176464.
  • Jang, A., P. Srinivasan, N. Y. Lee, H. P. Song, J. W. Lee, M. Lee, and C. Jo. 2008. Comparison of hypolipidemic activity of synthetic gallic acid-linoleic acid ester with mixture of gallic acid and linoleic acid, gallic acid, and linoleic acid on high-fat diet induced obesity in C57BL/6 Cr Slc mice. Chem. Biol. Interact. 174:109–17. doi:10.1016/j.cbi.2008.05.018.
  • Klafke, J. Z., A. da Silva, M. Fortes Rossato, M. Trevisan, G. Banderó Walker, C. I. Martins Leal, C. A. Olschowsky Borges, D. Chitolina Schetinger, M. R. Noal Moresco, M. M. Medeiros Frescura Duarte, et al. 2012. Antiplatelet, antithrombotic, and fibrinolytic activities of Campomanesia xanthocarpa. Evid. Based Complement. Alternat. Med. 2012:954748.
  • Klafke, J. Z., M. A. da Silva, T. F. Panigas, K. C. Belli, M. F. de Oliveira, M. M. Barichello, F. K. Rigo, M. F. Rossato, A. R. Soares Dos Santos, M. G. Pizzolatti, et al. 2010. Effects of Campomanesia xanthocarpa on biochemical, hematological and oxidative stress parameters in hypercholesterolemic patients. J. Ethnopharmacol. 127:299–305. doi:10.1016/j.jep.2009.11.004.
  • Klafke, J. Z., F. G. Porto, A. S. de Almeida, M. M. Parisi, G. E. Hirsch, G. Trevisan, and P. R. Viecili. 2016. Biomarkers of subclinical atherosclerosis and natural products as complementary alternative medicine. Curr. Pharm. 22:372–82. doi:10.2174/1381612822666151112151035.
  • Levine, S., and A. A. Saltzman. 2007. Procedure for inducing sustained hyperlipemia in rats by administration of a surfactant. J. Pharmacol. Toxicol. Meth. 55:224–26. doi:10.1016/j.vascn.2006.05.009.
  • Li, S. Y., C. Q. Chang, F. Y. Ma, and C. L. Yu. 2009. Modulating effects of chlorogenic acid on lipids and glucose metabolism and expression of hepatic peroxisome proliferator-activated receptor-alpha in golden hamsters fed on high fat diet. Biomed. Environ. Sci. 22:122–29. doi:10.1016/S0895-3988(09)60034-9.
  • Libby, P., and P. Theroux. 2005. Pathophysiology of coronary artery disease. Circulation 111:3481–88. doi:10.1161/CIRCULATIONAHA.105.537878.
  • Mannervik, B., and C. Guthenberg. 1981. Glutathione transferase (human placenta). Meth. Enzymol. 77:231–35.
  • Mavournin, K. H., D. H. Blakey, M. C. Cimino, M. F. Salamone, and J. A. Heddle. 1990. The in vivo micronucleus assay in mammalian bone marrow and peripheral blood. A report of the U.S. Environmental protection agency gene-tox program. Mutat. Res. 239:29–80. doi:10.1016/0165-1110(90)90030-F.
  • Misra, H. P., and I. Fridovich. 1972. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 247:3170–75.
  • Must, A., J. Spadano, E. H. Coakley, A. E. Field, G. Colditz, and W. H. Dietz. 1999. The disease burden associated with overweight and obesity. J Am Med Assoc 282:1523–29. doi:10.1001/jama.282.16.1523.
  • Otero, J. S., G. E. Hirsch, J. Z. Klafke, F. G. Porto, A. S. de Almeida, S. Nascimento, A. Schmidt, B. da Silva, R. L. D. Pereira, M. Jaskulski, et al. 2017. Inhibitory effect of Campomanesia xanthocarpa in platelet aggregation: Comparison and synergism with acetylsalicylic acid. Thromb. Res. 154:42–49. doi:10.1016/j.thromres.2017.03.020.
  • Otway, S., and D. S. Robinson. 1967. The use of a non-ionic detergent (Triton WR 1339) to determine rates of triglyceride entry into the circulation of the rat under different physiological conditions. J. Physiol. 190:321–32. doi:10.1113/jphysiol.1967.sp008211.
  • Pereira, M. C., R. S. Steffens, A. Jablonski, P. F. Hertz, O. Rios Ade, M. Vizzotto, and S. H. Flôres. 2012. Characterization and antioxidant potential of Brazilian fruits from the Myrtaceae family. J. Agric. Food Chem. 60:3061–67. doi:10.1021/jf205263f.
  • Pereira, P., P. A. de Oliveira, P. Ardenghi, L. Rotta, J. A. Henriques, and J. N. Picada. 2006. Neuropharmacological analysis of caffeic acid in rats. Basic Clin. Pharmacol. Toxicol. 99:374–78. doi:10.1111/j.1742-7843.2006.pto_533.x.
  • Porto, L. C., J. da Silva, A. B. Ferraz, E. M. Ethur, C. D. Porto, N. P. Marroni, and J. N. Picada. 2015. The antidiabetic and antihypercholesterolemic effects of an aqueous extract from pecan shells in Wistar rats. Plant Foods Hum. Nutr. 70:414–19. doi:10.1007/s11130-015-0510-9.
  • Porto, L. C., J. da Silva, K. Sousa, M. L. Ambrozio, A. de Almeida, C. E. Dos Santos, J. F. Dias, M. C. Allgayer, M. S. Dos Santos, P. Pereira, et al. 2016. Evaluation of toxicological effects of an aqueous extract of shells from the pecan nut Carya illinoinensis (Wangenh.) K. Koch and the possible association with its inorganic constituents and major phenolic compounds. Evid. Based Complementary. Altern. Med. 2016:4647830. doi:10.1155/2016/4647830.
  • Priyadarsini, K. I., S. M. Khopde, S. S. Kumar, and H. Mohan. 2002. Free radical studies of ellagic acid, a natural phenolic antioxidant. J. Agric. Food Chem. 50:2200–06. doi:10.1021/jf011275g.
  • Rasouli, M., H. Tahmouri, and M. Mosavi-Mehr. 2016. The long term kinetic of plasma lipids and lipoproteins in tyloxapol injected rats. J. Clin. Diagn. Res. 10:BF01–05. doi:10.7860/JCDR/2016/18890.7993.
  • Rody, H. V. S., D. C. Gontijo, V. P. M. Cielho, M. C. Ventrella, R. M. Padua, L. G. Fietto, and J. P. V. Leite. 2018. Mutagenic activity and chemical composition of phenolic-rich extracts of leaves of two species of Ficus medicinal plants. J. Toxicol. Environ. Health Part A 81:861–73. doi:10.1080/15287394.2018.1498420.
  • Rouhi-Boroujeni, H., E. Heidarian, H. Rouhi-Boroujeni, F. Deris, and M. Rafieian-Kopaei. 2017. Medicinal plants with multiple effects on cardiovascular diseases: A systematic review. Curr. Pharm. Des. 23:999–1015. doi:10.2174/1381612822666161021160524.
  • Salmazzo, G. R., M. H. Verdan, F. Silva, R. M. Cicarelli, J. D. S. Mota, M. J. Salvador, J. E. de Carvalho, and C. A. L. Cardoso. 2019. Chemical composition and antiproliferative, antioxidant and trypanocidal activities of the fruits from Campomanesia xanthocarpa (Mart.) O. Berg (Myrtaceae). Nat. Prod. Res. 15:1–5. doi:10.1080/14786419.2019.1607333.
  • Sant’Anna, L. S., L. Merlugo, C. S. Ehle, J. Limberger, M. B. Fernandes, M. C. Santos, A. S. L. Mendez, F. R. Paula, and C. M. Moreira. 2017. Chemical composition and hypotensive Effect of Campomanesia xanthocarpa. Evid. Based Complementary. Altern. Med. 2017: article ID 1591762. doi:10.1155/2017/1591762.
  • Sheehan, D., G. Meade, V. M. Foley, and C. A. Dowd. 2001. Structure, function and evolution of glutathione transferases: Implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem. J. 360:1–16. doi:10.1042/bj3600001.
  • Siasos, G., D. Tousoulis, V. Tsigkou, E. Kokkou, E. Oikonomou, M. Vavuranakis, E. K. Basdra, A. G. Papavassiliou, and C. Stefanadis. 2013. Flavonoids in atherosclerosis: An overview of their mechanisms of action. Curr. Med. Chem. 20:2641–60. doi:10.2174/0929867311320210003.
  • Signorelli, S. S., V. Fiore, and G. Malaponte. 2014. Inflammation and peripheral arterial disease: The value of circulating biomarkers (Review). Int. J. Mol. Med. 33:777–83. doi:10.3892/ijmm.2014.1657.
  • Souza-Moreira, T. M., L. E. Salvagnini, E. Santos, V. Y. Silva, R. R. Moreira, H. R. Salgado, and R. C. Pietro. 2011. Antidiarrheal activity of Campomanesia xanthocarpa fruit. J. Med. Food. 14:528–31. doi:10.1089/jmf.2009.0278.
  • Tice, R. R., E. Agurell, D. Anderson, B. Burlinson, A. Hartmann, H. Kobayashi, Y. Miyamae, E. Rojas, J. C. Ryu, and Y. F. Sasaki. 2000. Single cell gel/Comet assay: Guidelines for in vitro and in vivo genetic toxicology testing. Environ. Mol. Mutagen. 35:206–21. doi:10.1002/(SICI)1098-2280(2000)35:3<206::AID-EM8>3.0.CO;2-J.
  • Tieppo, J., R. Vercelino, A. S. Dias, M. F. Silva Vaz, T. R. Silveira, C. A. Marroni, N. P. Marroni, J. A. Henriques, and J. N. Picada. 2007. Evaluation of the protective effects of quercetin in the hepatopulmonary syndrome. Food Chem. Toxicol. 45:1140–46. doi:10.1016/j.fct.2006.12.020.
  • Tooulia, K. K., P. Theodosis-Nobelos, and E. A. Rekka. 2015. Thiomorpholine derivatives with hypolipidemic and antioxidant activity. Arch. Pharm. 348:629–34. doi:10.1002/ardp.201500147.
  • Usta, C., S. Ozdemir, M. Schiariti, and P. E. Puddu. 2013. The pharmacological use of ellagic acid-rich pomegranate fruit. Int. J. Food Sci. Nutr. 64:907–13. doi:10.3109/09637486.2013.798268.
  • Venkadeswaran, K., A. R. Muralidharan, T. Annadurai, V. V. Ruban, M. Sundararajan, R. Anandhi, P. A. Thomas, and P. Geraldine. 2014. Antihypercholesterolemic and antioxidative potential of an extract of the plant, Piper betle, and its active constituent, eugenol, in Triton WR-1339-induced hypercholesterolemia in experimental rats. Evid. Based Complementary. Altern. Med. 2014:478973. doi:10.1155/2014/478973.
  • Viecili, P. R., D. O. Borges, K. Kirsten, J. Malheiros, E. Viecili, R. D. Melo, G. Trevisan, M. A. da Silva, G. V. Bochi, R. N. Moresco, et al. 2014. Effects of Campomanesia xanthocarpa on inflammatory processes, oxidative stress, endothelial dysfunction and lipid biomarkers in hypercholesterolemic individuals. Atherosclerosis 234:85–92. doi:10.1016/j.atherosclerosis.2014.02.010.
  • Wan, C. W., C. N. Wong, W. K. Pin, M. H. Wong, C. Y. Kwok, R. Y. Chan, P. H. Yu, and S. W. Chan. 2013. Chlorogenic acid exhibits cholesterol lowering and fatty liver attenuating properties by up-regulating the gene expression of PPAR-α in hypercholesterolemic rats induced with a high-cholesterol diet. Phytother. Res. 27:545–51. doi:10.1002/ptr.4751.
  • Yao, N., R. R. He, X. H. Zeng, X. J. Huang, T. L. Du, J. C. Cui, and K. Hiroshi. 2014. Hypotriglyceridemic effects of apple polyphenols extract via up-regulation of lipoprotein lipase in triton WR-1339-induced mice. Chin. J. Integr. Med. 20:31–35. doi:10.1007/s11655-012-1243-3.
  • Zarzecki, M. S., S. M. Araujo, V. C. Bortolotto, M. T. de Paula, C. R. Jesse, and M. Prigol. 2014. Hypolipidemic action of chrysin on Triton WR-1339-induced hyperlipidemia in female C57BL/6 mice. Toxicol. Rep. 1:200–08. doi:10.1016/j.toxrep.2014.02.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.