2,259
Views
7
CrossRef citations to date
0
Altmetric
Articles

A suggested bisphenol A metabolite (MBP) interfered with reproductive organ development in the chicken embryo while a human-relevant mixture of phthalate monoesters had no such effects

ORCID Icon, , ORCID Icon & ORCID Icon

References

  • Acconcia, F., V. Pallottini, and M. Marino. 2015. Molecular mechanisms of action of BPA. Dose-Response 13:1559325815610582. doi:10.1177/1559325815610582.
  • Aoki, T., and T. Takada. 2012. Bisphenol A modulates germ cell differentiation and retinoic acid signaling in mouse ES cells. Reprod. Toxicol. 34:463–70. doi:10.1016/j.reprotox.2012.06.001.
  • Baker, M. E., and C. Chandsawangbhuwana. 2012. 3D models of MBP, a biologically active metabolite of Bisphenol A, in human estrogen receptor α and estrogen receptor β. PLoS ONE 7:e46078. doi:10.1371/journal.pone.0046078.
  • Berg, C., A. Blomqvist, L. Holm, I. Brandt, B. Brunström, and Y. Ridderstrale. 2004. Embryonic exposure to oestrogen causes eggshell thinning and altered shell gland carbonic anhydrase expression in the domestic hen. Reproduction 128:455–61. doi:10.1530/rep.1.00211.
  • Berg, C., K. Halldin, and B. Brunström. 2001a. Effects of bisphenol A and tetrabromobisphenol A on sex organ development in quail and chicken embryos. Environ. Toxicol. Chem. 20:2836–40. doi:10.1002/etc.v20:12.
  • Berg, C., K. Halldin, A. K. Fridolfsson, I. Brandt, and B. Brunström. 1999. The avian egg as a test system for endocrine disrupters: Effects of diethylstilbestrol and ethynylestradiol on sex organ development. Sci. Total Environ. 233:57–66. doi:10.1016/S0048-9697(99)00179-5.
  • Berg, C., L. Holm, I. Brandt, and B. Brunström. 2001b. Anatomical and histological changes in the oviducts of Japanese quail, Coturnix japonica, after embryonic exposure to ethynyloestradiol. Reproduction 121:155–65. doi:10.1530/rep.0.1210155.
  • Berg, C., K. Halldin, B. Brunström, and I. Brandt. 1998. Methods for studying xenoestrogenic effects in birds. Toxicol. Lett. 102-103:671–76. doi:10.1016/S0378-4274(98)00285-9.
  • Biau, S., S. Bayle, P. de Santa Barbara, and B. Roig. 2006. The chick embryo: An animal model for detection of the effects of hormonal compounds. Anal. Bioanal. Chem. 38:1397.
  • Bjerregaard, L. B., C. Lindholst, B. Korsgaard, and P. Bjerregaard. 2008. Sex hormone concentrations and gonad histology in brown trout (Salmo trutta) exposed to 17β-estradiol and bisphenol A. Ecotoxicology 17:252–63. doi:10.1007/s10646-008-0192-2.
  • Bornehag, C.-G., F. Carlstedt, B. A. G. Jönsson, C. H. Lindh, T. K. Jensen, A. Bodin, C. Jonsson, S. Janson, and S. H. Swan. 2015. Prenatal phthalate exposures and anogenital distance in Swedish boys. Environ. Health Perspect. 123:101–07. doi:10.1289/ehp.1408163.
  • Bornehag, C.-G., E. Kitraki, A. Stamatakis, E. Panagiotidou, C. Rudén, H. Shu, C. Lindh, J. Ruegg, and C. Gennings. 2019. A novel approach to chemical mixture risk assessment – Linking data from population based epidemiology and experimental animal tests. Risk Anal. doi:10.1111/risa.13323.
  • Bornehag, C. G., S. Moniruzzaman, M. Larsson, C. B. Lindstrom, M. Hasselgren, A. Bodin, L. B. von Kobyletzkic, F. Carlstedt, F. Lundin, E. Nanberg, et al. 2012. The SELMA study: A birth cohort study in Sweden following more than 2000 mother-child pairs. Paediatr. Perinat. Epidemiol. 26:456–67. doi:10.1111/j.1365-3016.2012.01314.x.
  • Brown, A. R., J. M. Green, J. Moreman, L. M. Gunnarsson, S. Mourabit, J. Ball, M. J. Winter, M. Trznadel, A. Correia, C. Hacker, et al. 2019. Cardiovascular effects and molecular mechanisms of Bisphenol A and its metabolite MBP in Zebrafish. Environ. Sci. Technol. 53:463–74. doi:10.1021/acs.est.8b04281.
  • Brunström, B., and L. Andersson. 1988. Toxicity and 7-ethoxyresorufin O-deethylase-inducing potency of coplanar polychlorinated biphenyls (PCBs) in chick embryos. Arch. Toxicol. 62:263–66. doi:10.1007/BF00332485.
  • Brunström, B., J. Axelsson, A. Mattsson, and K. Halldin. 2009. Effects of estrogens on sex differentiation in Japanese quail and chicken. Gen. Comp. Endocrinol. 163:97–103. doi:10.1016/j.ygcen.2009.01.006.
  • Camacho, L., S. M. Lewis, M. M. Vanlandingham, G. R. Olson, K. J. Davis, R. E. Patton, N. C. Twaddle, D. R. Doerge, M. I. Churchwell, M. S. Bryant, et al. 2019. A two-year toxicology study of bisphenol A (BPA) in Sprague-Dawley rats: CLARITY-BPA core study results. Food Chem. Toxicol. 132:110728. doi:10.1016/j.fct.2019.110728.
  • Christiansen, S., M. Axelstad, J. Boberg, A. M. Vinggaard, G. A. Pedersen, and U. Hass. 2014. Low-dose effects of bisphenol A on early sexual development in male and female rats. Reproduction 147:477–87. doi:10.1530/REP-13-0377.
  • Corrales, J., L. A. Kristofco, W. B. Steele, B. S. Yates, C. S. Breed, E. S. Williams, and B. W. Brooks. 2015. Global assessment of Bisphenol A in the environment: Review and analysis of its occurrence and bioaccumulation. Dose-Response 13:1559325815598308. doi:10.1177/1559325815598308.
  • Coughtrie, M. W., B. Burchell, J. E. Leakey, and R. Hume. 1988. The inadequacy of perinatal glucuronidation: Immunoblot analysis of the developmental expression of individual UDP-glucuronosyltransferase isoenzymes in rat and human liver microsomes. Mol. Pharmacol. 34:729–35.
  • De Campos, P., I. M. Oliveira, J. S. deSouza, R. R. da Concelicao, G. Giannocco, M. I. Chiamolera, M. R. D. Silva, M. A. Romano, and M. Romano. 2019. Maternal bisphenol A exposure disrupts permatogenesis in adult rat offspring. J. Toxicol. Environ. Health Part A 82:163–75. doi:10.1080/15287394.2019.1572557.
  • DeFalco, T., and B. Capel. 2009. Gonad morphogenesis in vertebrates: Divergent means to a convergent end. Annu. Rev. Cell Dev. Biol. 25:457–82. doi:10.1146/annurev.cellbio.042308.13350.
  • Domoradzki, J. Y., C. M. Thornton, L. H. Pottenger, S. C. Hansen, T. L. Card, D. A. Markham, M. D. Dryzga, R. N. Shiotsuka, and J. M. Waechter Jr. 2004. Age and dose dependency of the pharmacokinetics and metabolism of bisphenol A in neonatal sprague-dawley rats following oral administration. Toxicol. Sci. 77:230–42. doi:10.1093/toxsci/kfh054.
  • Dorman, D. C., W. Chiu, B. F. Hales, R. Hauser, K. J. Johnson, E. Mantus, S. Martel, K. A. Robinson, A. A. Rooney, R. Rudel, et al. 2018. Systematic reviews and meta-analyses of human and animal evidence of prenatal diethylhexyl phthalate exposure and changes in male anogenital distance. J. Toxicol. Environ. Health B 21:207–26. doi:10.1080/10937404.2018.1505354.
  • Fridolfsson, A.-K., and H. Ellegren. 1999. A simple and universal method for molecular sexing of non-ratite birds. J. Avian Biol. 30:116–21. doi:10.2307/3677252.
  • Furuya, M., K. Adachi, S. Kuwahara, K. Ogawa, and Y. Tsukamoto. 2006. Inhibition of male chick phenotypes and spermatogenesis by Bisphenol-A. Life Sci. 78:1767–76. doi:10.1016/j.lfs.2005.08.016.
  • Gani, K. M., V. K. Tyagi, and A. A. Kazmi. 2017. Occurrence of phthalates in aquatic environment and their removal during wastewater treatment processes: A review. Environ. Sci. Pollut. Res. 24:17267–84. doi:10.1007/s11356-017-9182-3.
  • Gray, L. E., Jr., J. Ostby, J. Furr, M. Price, D. N. Veeramachaneni, and L. Parks. 2000. Perinatal exposure to the phthalates DEHP, BBP, and DINP, but not DEP, DMP, or DOTP, alters sexual differentiation of the male rat. Toxicol. Sci. 58:350–65. doi:10.1093/toxsci/58.2.350.
  • Gray, T. J. B., I. R. Rowland, P. M. D. Foster, and S. D. Gangolli. 1982. Species differences in the testicular toxicity of phthalate esters. Toxicol. Lett. 11:141–47. doi:10.1016/0378-4274(82)90119-9.
  • Greenwood, A. W., and J. S. S. Blyth. 1938. Experimental modification of the accessory sexual apparatus in the hen. Quart. J. Exp. Physiol. Cogn. Med. Sci. 28:61–69.
  • Habert, R., V. Muczynski, A. Lehraiki, R. Lambrot, C. Lécureuil, C. Levacher, H. Coffigny, C. Pairault, D. Moison, R. Frydman, et al. 2009. Adverse effects of endocrine disruptors on the foetal testis development: Focus on the phthalates.Folia Histochem Cytobiol.47:S67–S74. doi:10.2478/v10042-009-0056-5.
  • Hirao-Suzuki, M., S. Takeda, K. Okuda, M. Takiguchi, and S. Yoshihara. 2019. Repeated exposure to 4-Methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), an active metabolite of Bisphenol A, aggressively stimulates breast cancer cell growth in an estrogen receptor β (ERβ)-dependent manner. Mol. Pharmacol. 95:260–68. doi:10.1124/mol.118.114124.
  • Howdeshell, K. L., J. Furr, C. R. Lambright, V. S. Wilson, B. C. Ryan, and L. E. Gray Jr. 2008. Gestational and lactational exposure to ethinyl estradiol, but not bisphenol A, decreases androgen-dependent reproductive organ weights and epididymal sperm abundance in the male long evans hooded rat. Toxicol. Sci. 102:371–82. doi:10.1093/toxsci/kfm306.
  • Ishibashi, H., N. Watanabe, N. Matsumura, M. Hirano, Y. Nagao, H. Shiratsuchi, S. Kohra, S.-I. Yoshihara, and K. Arizono. 2005. Toxicity to early life stages and an estrogenic effect of a bisphenol A metabolite, 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene on the medaka (Oryzias latipes). Life Sci. 77:2643–55. doi:10.1016/j.lfs.2005.03.025.
  • Jessl, L., R. Lenz, F. G. Massing, J. Scheider, and J. Oehlmann. 2018b. Effects of estrogens and antiestrogens on gonadal sex differentiation and embryonic development in the domestic fowl (Gallus gallus domesticus). PeerJ 6:e5094. doi:10.7717/peerj.5094.
  • Jessl, L., J. Scheider, and J. Oehlmann. 2018a. The domestic fowl (Gallus gallus domesticus) embryo as an alternative for mammalian experiments – Validation of a test method for the detection of endocrine disrupting chemicals. Chemosphere 196:502–13. doi:10.1016/j.chemosphere.2017.12.131.
  • Johnson, K. J., N. E. Heger, and K. Boekelheide. 2012. Of mice and men (and rats): Phthalate-induced fetal testis endocrine disruption is species-dependent. Toxicol. Sci. 129:235–48. doi:10.1093/toxsci/kfs206.
  • Jönsson, M. E., A. Mattsson, S. Shaik, and B. Brunström. 2016. Toxicity and cytochrome P450 1A mRNA induction by 6-formylindolo[3,2-b]carbazole (FICZ) in chicken and Japanese quail embryos. Comp. Biochem. Physiol. Toxicol. Pharmacol. 179:125–36. doi:10.1016/j.cbpc.2015.09.014.
  • Katoh, H., Y. Ogino, and G. Yamada. 2006. Cloning and expression analysis of androgen receptor gene in chicken embryogenesis. FEBS Lett. 580:1607–15. doi:10.1016/j.febslet.2006.01.093.
  • Kurebayashi, H., R. Harada, R. K. Stewart, H. Numata, and Y. Ohno. 2002. Disposition of a low dose of Bisphenol A in male and female Cynomolgus monkeys. Toxicol. Sci. 68:32–42. doi:10.1093/toxsci/68.1.32.
  • Lee, B. M., and H. J. Koo. 2007. Hershberger assay for antiandrogenic effects of phthalates. J. Toxicol. Environ. Health Part A 70:1365–70. doi:10.1080/15287390701432285.
  • Lin, H., R.-S. Ge, G.-R. Chen, G.-X. Hu, L. Dong, -Q.-Q. Lian, D. O. Hardy, C. M. Sottas, X.-K. Li, and M. P. Hardy. 2008. Involvement of testicular growth factors in fetal Leydig cell aggregation after exposure to phthalate in utero. Proc. Natl. Acad. Sci. 105:7218–22. doi:10.1073/pnas.0709260105.
  • Matsumoto, J., H. Yokota, and A. Yuasa. 2002. Developmental increases in rat hepatic microsomal UDP-glucuronosyltransferase activities toward xenoestrogens and decreases during pregnancy. Environ. Health Perspect. 110:193–96. doi:10.1289/ehp.02110193.
  • Mattsson, A., A. Kärrman, R. Pinto, and B. Brunström. 2015. Metabolic profiling of chicken embryos exposed to perfluorooctanoic acid (PFOA) and agonists to peroxisome proliferator-activated receptors. PLoS ONE 10:e0143780–e0143780. doi:10.1371/journal.pone.0143780.
  • Mattsson, A., J. A. Olsson, and B. Brunström. 2011. Activation of estrogen receptor alpha disrupts differentiation of the reproductive organs in chicken embryos. Gen. Comp. Endocrinol. 172:251–59. doi:10.1016/j.ygcen.2011.03.010.
  • Mattsson, A., S. Sjöberg, A. Kärrman, and B. Brunström. 2019. Developmental exposure to a mixture of perfluoroalkyl acids (PFAAs) affects the thyroid hormone system and the bursa of Fabricius in the chicken. Sci. Rep. 9:19808. doi:10.1038/s41598-019-56200-9.
  • Meeker, J., and K. K. Ferguson. 2014. Urinary phthalate metabolites are associated with decreased serum testosterone in men, women, and children from NHANES 2011–2012. J. Clin. Endocrinol. Metab. 99:4346–52. doi:10.1210/jc.2014-2555.
  • Michałowicz, J. 2014. Bisphenol A – Sources, toxicity and biotransformation. Environ. Toxicol. Pharmacol. 37:738–58. doi:10.1016/j.etap.2014.02.003.
  • Mieritz, M., G., . H. Frederiksen, K. Sørensen, L. Aksglaede, A. Mouritsen, C. P. Hagen, N. E. Skakkebaek, A.-M. Andersson, and A. Juul. 2012. Urinary phthalate excretion in 555 healthy Danish boys with and without pubertal gynaecomastia. Int. J. Androl. 35:227–35. doi:10.1111/j.1365-2605.2012.01279.x.
  • Moreman, J., A. Takesono, M. Trznadel, M. J. Winter, A. Perry, M. E. Wood, N. J. Rogers, T. Kudoh, and C. R. Tyler. 2018. Estrogenic mechanisms and cardiac responses following early life exposure to Bisphenol A (BPA) and its metabolite 4-Methyl-2,4-bis(p-hydroxyphenyl)pent-1-ene (MBP) in zebrafish. Environ. Sci. Technol. 52:6656–65. doi:10.1021/acs.est.8b01095.
  • Mylchreest, E., R. C. Cattley, and P. M. D. Foster. 1998. Male reproductive tract malformations in rats following gestational and lactational exposure to di(n-butyl) phthalate: An antiandrogenic mechanism? Toxicol. Sci. 43:47–60. doi:10.1093/toxsci/43.1.47.
  • Mylchreest, E., D. G. Wallace, R. C. Cattley, and P. M. D. Foster. 2000. Dose-dependent alterations in androgen-regulated male reproductive development in rats exposed to di(n-butyl) phthalate during late gestation. Toxicol. Sci. 55:143–51. doi:10.1093/toxsci/55.1.143.
  • Nehring, I., M. Staniszewska, and L. Falkowska. 2017. Human hair, Baltic grey seal (Halichoerus grypus) fur and herring gull (Larus argentatus) feathers as accumulators of Bisphenol A and alkylphenols. Arch. Environ. Contam. Toxicol. 72:552–61. doi:10.1007/s00244-017-0402-0.
  • Newbold, R. R., W. N. Jefferson, and E. Padilla-Banks. 2007. Long-term adverse effects of neonatal exposure to bisphenol A on the murine female reproductive tract. Reprod. Toxicol. 24:253–58. doi:10.1016/j.reprotox.2007.07.006.
  • Okuda, K., M. Takiguchi, and S. Yoshihara. 2010. In vivo estrogenic potential of 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene, an active metabolite of bisphenol A, in uterus of ovariectomized rat. Toxicol. Lett. 197:7–11. doi:10.1016/j.toxlet.2010.04.017.
  • Parks, L. G., J. S. Ostby, C. R. Lambright, B. D. Abbott, G. R. Klinefelter, N. J. Barlow, and L. E. Gray. 2000. The plasticizer diethylhexyl phthalate induces malformations by decreasing fetal testosterone synthesis during sexual differentiation in the male rat. Toxicol. Sci. 58:339–49. doi:10.1093/toxsci/58.2.339.
  • Prins, G. S., H. B. Patisaul, S. M. Belcher, and L. N. Vandenberg. 2019. CLARITY-BPA academic laboratory studies identify consistent low-dose Bisphenol A effects on multiple organ systems. Basic Clin. Pharmacol. Toxicol. 125 (S3):14–31. doi:10.1111/bcpt.13125.
  • Radke, E. G., J. M. Braun, J. D. Meeker, and G. S. Cooper. 2018. Phthalate exposure and male reproductive outcomes: A systematic review of the human epidemiological evidence. Environ. Int. 121:764–93. doi:10.1016/j.envint.2018.07.029.
  • Rehan, M., E. Ahmad, I. A. Sheikh, A. M. Abuzenadah, G. A. Damanhouri, O. S. Bajouh, S. F. AlBasri, M. M. Assiri, and M. A. Beg. 2015. Androgen and progesterone receptors are targets for bisphenol A (BPA), 4-Methyl-2,4-bis-(p-hydroxyphenyl)pent-1-ene – A potent metabolite of BPA, and 4-tert-octylphenol: A computational insight. PLoS ONE 10:e0138438. doi:10.1371/journal.pone.0138438.
  • Repouskou, A., E. Panagiotidou, L. Panagopoulou, P. L. Bisting, A., . R. Tuck, M. O. D. Sjödin, J. Lindberg, E. Bozas, J. Rüegg, C. Gennings, et al. 2019. Gestational exposure to an epidemiologically defined mixture of phthalates leads to gonadal dysfunction in mouse offspring of both sexes. Sci. Rep. 9:6424. doi:10.1038/s41598-019-42377-6.
  • Rissman, E. F., M. Ascenzi, P. Johnson, and E. Adkins-Regan. 1984. Effect of embryonic treatment with oestradiol benzoate on reproductive morphology, ovulation and oviposition and plasma LH concentrations in female quail (Coturnix coturnix japonica). J. Reprod. Fertil. 71:411–17. doi:10.1530/jrf.0.0710411.
  • Rochester, J. R. 2013. Bisphenol A and human health: A review of the literature. Reprod. Toxicol. 42:132–55. doi:10.1016/j.reprotox.2013.08.008.
  • Romanoff, A. L. 1960. The Avian Embryo; Structural and Functional Development. New York: Macmillan.
  • Ruijter, J. M., C. Ramakers, W. M. H. Hoogaars, Y. Karlen, O. Bakker, M. J. B. van den Hoff, and A. F. M. Moorman. 2009. Amplification efficiency: Linking baseline and bias in the analysis of quantitative PCR data. Nucl. Acids Res. 37:e45–e45. doi:10.1093/nar/gkp045.
  • Ryan, B. C., A. K. Hotchkiss, K. M. Crofton, and L. E. Gray Jr. 2010. In utero and lactational exposure to bisphenol A, in contrast to ethinyl estradiol, does not alter sexually dimorphic behavior, puberty, fertility, and anatomy of female LE rats. Toxicol. Sci. 114:133–48. doi:10.1093/toxsci/kfp266.
  • Santangeli, S., F. Maradonna, I. Olivotto, C. C. Piccinetti, G. Gioacchini, and O. Carnevali. 2017. Effects of BPA on female reproductive function: The involvement of epigenetic mechanism. Gen. Comp. Endocrinol. 245:122–26. doi:10.1016/j.ygcen.2016.08.010.
  • Scheib, D. 1983. Effects and role of estrogens in avian gonadal differentiation. Mechanisms of Gonadal Differentiation in Vertebrates: Contributions of an EMBO-Workshop held in Freiburg, Berlin, Heidelberg: Springer Berlin Heidelberg, November 5–8, 1982.
  • Schneider, C. A., W. S. Rasband, and K. W. Eliceiri. 2012. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9:671. doi:10.1038/nmeth.2089.
  • Shono, T., H. Kai, S. Suita, and H. Nawata. 2000. Time-specific effects of mono-n-butyl phthalate on the transabdominal descent of the testis in rat fetuses. Br. J. Urol. Int. 86:121–25. doi:10.1046/j.1464-410x.2000.00710.x.
  • Skakkebæk, N. E., E. Rajpert-De Meyts, and K. M. Main. 2001. Testicular dysgenesis syndrome: An increasingly common developmental disorder with environmental aspects: Opinion. Human Reprod. 16:972–78. doi:10.1093/humrep/16.5.972.
  • Snyder, R. W., S. C. Maness, K. W. Gaido, F. Welsch, S. C. J. Sumner, and T. R. Fennell. 2000. Metabolism and disposition of Bisphenol A in female rats. Toxicol. Appl. Pharmacol. 168:225–34. doi:10.1006/taap.2000.9051.
  • Strassburg, C. P., A. Strassburg, S. Kneip, A. Barut, R. H. Tukey, B. Rodeck, and M. P. Manns. 2002. Developmental aspects of human hepatic drug glucuronidation in young children and adults. Gut 50:259. doi:10.1136/gut.50.2.259.
  • Suvorov, A., and D. J. Waxman. 2015. Early programing of uterine tissue by bisphenol A: Critical evaluation of evidence from animal exposure studies. Reprod. Toxicol. 57:59–72. doi:10.1016/j.reprotox.2015.05.008.
  • Swan, S. H., S. Sathyanarayana, E. S. Barrett, S. Janssen, F. Liu, R. H. Nguyen, and J. B. Redmon. 2015. First trimester phthalate exposure and anogenital distance in newborns. Human Reprod. 30:963–72. doi:10.1093/humrep/deu363.
  • Tamschick, S., B. Rozenblut-Kościsty, M. Ogielska, D. Kekenj, F. Gajewski, A. Krüger, W. Kloas, and M. Stöck. 2016. The plasticizer bisphenol A affects somatic and sexual development, but differently in pipid, hylid and bufonid anurans. Pollut 216:282–91. doi:10.1016/j.envpol.2016.05.091.
  • Vandenberg, L. N. 2013. Non-monotonic dose responses in studies of endocrine disrupting chemicals: Bisphenol a as a case study. Dose-response 12:259–76. doi:10.2203/dose-response.13-020.Vandenberg.
  • Vandenberg, L. N., R. Hauser, M. Marcus, N. Olea, and W. V. Welshons. 2007. Human exposure to bisphenol A (BPA). Reprod. Toxicol. 24:139–77. doi:10.1016/j.reprotox.2007.07.010.
  • Völkel, W., T. Colnot, G. A. Csanády, J. G. Filser, and W. Dekant. 2002. Metabolism and kinetics of Bisphenol A in humans at low doses following oral administration. Chem. Res. Toxicol. 15:1281–87. doi:10.1021/tx025548t.
  • WHO. 2012. State of the science of endocrine disrupting chemicals–2012. Geneva, Switzerland: World Health Organization.
  • Williams, C., M. Bondesson, D. N. Krementsov, and C. Teuscher. 2014. Gestational bisphenol A exposure and testis development. Endocr. Disruptors (Austin) 2:e29088.
  • Willier, B. H., M. E. Rawles, and F. C. Koch. 1938. Biological differences in the action of synthetic male hormones on the differentiation of sex in the chick embryo. Proc. Natl. Acad. Sci. USA 24:176. doi:10.1073/pnas.24.4.176.
  • Woods, J. E., and L. H. Erton. 1978. The synthesis of estrogens in the gonads of the chick embryo. Gen. Comp. Endocrinol. 36:360–70. doi:10.1016/0016-6480(78)90117-X.
  • Wormuth, M., M. Scheringer, M. Vollenweider, and K. Hungerbühler. 2006. What are the sources of exposure to eight frequently used phthalic acid esters in Europeans? Risk Anal. 26:803–24. doi:10.1111/j.1539-6924.2006.00770.x.
  • Yoon., K., S. J. Kwack, H. S. Kim, and B.-M. Lee. 2014. Estrogenic endocrine-disrupting chemicals: Molecular mechanisms of action on putative human diseases. J. Toxicol. Environ. Health B 17:127–74. doi:10.1080/10937404.2014.882194.
  • Yoshihara, S., M. Makishima, N. Suzuki, and S. Ohta. 2001. Metabolic activation of Bisphenol A by rat liver S9 fraction. Toxicol. Sci. 62:221–27. doi:10.1093/toxsci/62.2.221.
  • Yoshihara, S., T. Mizutare, M. Makishima, N. Suzuki, N. Fujimoto, K. Igarashi, and S. Ohta. 2004. Potent estrogenic metabolites of Bisphenol A and Bisphenol B formed by rat liver S9 fraction: Their structures and estrogenic potency. Toxicol. Sci. 78:50–59. doi:10.1093/toxsci/kfh047.
  • Yu, M., Y. Xu, M. Li, D. Li, Y. Lu, D. Yu, and W. Du. 2018. Bisphenol A accelerates meiotic progression in embryonic chickens via the estrogen receptor β signaling pathway. Gen. Comp. Endocrinol. 259:66–75. doi:10.1016/j.ygcen.2017.11.004.