171
Views
7
CrossRef citations to date
0
Altmetric
Articles

Detoxifying effects of optimal hyperoxia (40% oxygenation) exposure on benzo[a]pyrene-induced toxicity in human keratinocytes

, &

References

  • Barrera-Rodríguez, R. 2018. Importance of the Keap1-Nrf2 pathway in NSCLC: Is it a possible biomarker? Biomed. Rep. 9:375–82. doi:10.3892/br.2018.1143.
  • Basak, P., P. Sadhukhan, P. Sarkar, and P. C. Sil. 2017. Perspectives of the Nrf-2 signaling pathway in cancer progression and therapy. Toxicol. Rep. 4:306–18. doi:10.1016/j.toxrep.2017.06.002.
  • Bellezza, I., I. Giambanco, A. Minelli, and R. Donato. 2018. Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim. Biophys. Acta Mol. Cell Res. 865:721–33. doi:10.1016/j.bbamcr.2018.02.010.
  • BfR (Federal Institute for Risk Assessment). 2010. Carcinogenic polycyclic aromatic hydrocarbons (PAHs) in consumer products to be regulated by the EU - risk assessment by BfR in the context of a restriction proposal under REACH. BfR Opinion Nr. 032/2010. https://mobil.bfr.bund.de/cm/349/carcinogenic_polycyclic_aromatic_hydrocarbons_pahs_in_consumer_products_to_be_regulated_by_the_eu.pdf.
  • Boström, C. E., P. Gerde, and A. Hanberg. 2002. Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environ. Health Perspect. 110:451–88. doi:10.1289/ehp.110-1241197.
  • Chandel, N. S., and G. R. Budinger. 2007. The cellular basis for diverse responses to oxygen. Free Radic. Biol. Med. 42:165–74. doi:10.1016/j.freeradbiomed.2006.10.048.
  • Chiew, A. L., and N. A. Buckley. 2014. Carbon monoxide poisoning in the 21st century. Crit. Care 18:221. doi:10.1186/2Fcc13846.
  • Cho, H. Y., A. E. Jedlicka, S. P. Reddy, T. W. Kensler, M. Yamamoto, L. Y. Zhang, and S. R. Kleeberger. 2002. Role of NRF2 in protection against hyperoxic lung injury in mice. Am. J. Respir. Cell Mol. Biol. 26:175–82. doi:10.1165/ajrcmb.26.2.4501.
  • Dhatwalia, S. K., M. Kumar, P. Bhardwaj, and D. K. Dhawan. 2019. White tea - A cost effective alternative to EGCG in fight against benzo(a)pyrene (BaP) induced lung toxicity in SD rats. Food Chem. Toxicol. 131:110551. doi:10.1016/j.fct.2019.05.059.
  • Edatt, L., K. Haritha, T. V. Sruthi, P. Aswini, and V. B. Sameer Kumar. 2016. 2-Deoxy glucose regulate MMP-9 in a SIRT-1 dependent and NFkB independent mechanism. Mol. Cell. Biochem. 423:197–206. doi:10.1007/s11010-016-2837-4.
  • EPA (United States Environmental Protection Agency). 2017. Toxicological review of Benzo[a]pyrene [CASRN 50-32-8]. EPA/635/R-17/003Fa. https://cfpub.epa.gov/ncea/iris/iris_documents/documents/toxreviews/0136tr.pdf.
  • Favier, F. B., F. Prieur, O. Grataloup, T. Busso, J. Castells, C. Denis, A. Geyssant, and H. Benoit. 2005. A high blood lactate induced by heavy exercise does not affect the increase in submaximal VO2 with hyperoxia. Eur. J. Appl. Physiol. 94:107–12. doi:10.1007/s00421-004-1310-3.
  • Fernye, C., Z. Ancsin, A. Bócsai, K. Balogh, M. Mézes, and M. Erdélyi. 2018. Role of glutathione redox system on the T-2 toxin tolerance of pheasant (Phasianus colchicus). Toxicol. Res. 34:249–57. doi:10.5487/TR.2018.34.3.249.
  • Garcia-Peterson, L. M., M. J. Wilking-Busch, M. A. Ndiaye, C. G. A. Philippe, V. Setaluri, and N. Ahmad. 2017. Sirtuins in skin and skin cancers. Skin Pharmacol. Physiol. 30:216–24. doi:10.1159/000477417.
  • Guo, X., and N. Mei. 2018. Benchmark dose modeling of in vitro genotoxicity data: A reanalysis. Toxicol. Res. 34:303–10. doi:10.5487/TR.2018.34.4.303.
  • Hafner, S., F. Beloncle, A. Koch, P. Radermacher, and P. Asfar. 2005. Hyperoxia in intensive care, emergency, and peri-operative medicine. Ann. Intensive Care 5:42. doi:10.1186/s13613-015-0084-6.
  • Hummel, J. M., E. P. Madeen, L. K. Siddens, S. L. Uesugi, T. McQuistan, K. A. Anderson, K. W. Turteltaub, T. J. Ognibene, G. Bench, S. K. Krueger, et al. 2018. Pharmacokinetics of [14C]-benzo[a]pyrene (BaP) in humans: Impact of co-administration of smoked salmon and BaP dietary restriction. Food Chem. Toxicol. 115:136–47. doi:10.1016/j.fct.2018.03.003.
  • IARC (International Agency for Research on Cancer). 2010. Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures, IARC monographs on the evaluation of carcinogenic risks to humans. 92: 1–853. http://monographs.iarc.fr/ENG/Monographs/vol92/mono92.pdf.
  • IARC (International Agency for Research on Cancer). 2019. IARC monographs to the identification of carcinogenic hazards to humans. https://monographs.iarc.fr/agents-classified-by-the-iarc/.
  • Ji, K., C. Xing, F. Jiang, X. Wang, H. Guo, J. Nan, L. Qian, P. Yang, J. Lin, M. Li, et al. 2013. Benzo[a]pyrene induces oxidative stress and endothelial progenitor cell dysfunction via the activation of the NF-κB pathway. Int. J. Mol. Med. 31:922–30. doi:10.3892/ijmm.2013.1288.
  • Jiao, S., B. Liu, and Y. Meng. 2012. Benzo[a]pyrene and human embryo, the human embryo. Shigehito Yamada and Tetsuya Takakuwa. IntechOpen. https://www.intechopen.com/books/the-human-embryo/benzo-a-pyrene-and-human-embryo
  • Katsuragi, Y., Y. Ichimura, and M. Komatsu. 2016. Regulation of the Keap1–Nrf2 pathway by p62/SQSTM1. Curr. Opin. Toxicol. 1:54–61. doi:10.1016/j.cotox.2016.09.005.
  • Knighton, D. R., B. Halliday, and T. K. Hunt. 1984. Oxygen as an antibiotic. The effect of inspired oxygen on infection. Arch. Surg. 119:199–204. doi:10.1001/archsurg.1984.01390140057010.
  • Kwak, M. K., K. Itoh, M. Yamamoto, T. R. Sutter, and T. W. Kensler. 2001. Role of transcription factor Nrf2 in the induction of hepatic phase 2 and antioxidative enzymes in vivo by the cancer chemoprotective agent, 3H-1, 2-dimethiole-3-thione. Mol. Med. 7:135–45. doi:10.1007/BF03401947.
  • Lee, B. M., J. J. Jang, and H. S. Kim. 1998. Benzo(a)pyrene diol-epoxide-I-DNA and oxidative DNA adducts associated with gastric adenocarcinoma. Cancer Lett. 125:61–68. doi:10.1016/s0304-3835(97)00520-x.
  • Lee, W., S. K. Ku, J. E. Kim, S. H. Cho, G. Y. Song, and J. S. Bae. 2019. Inhibitory effects of protopanaxatriol type ginsenoside fraction (Rgx365) on particulate matter-induced pulmonary injury. J. Toxicol. Environ. Health A 82:338–50. doi:10.1080/15287394.2019.1596183.
  • Leverve, X. M. 2007. Mitochondrial function and substrate availability. Crit. Care Med. 35:S454–S460. doi:10.1097/01.CCM.0000278044.19217.73.
  • Lim, J., L. Ortiz, B. N. Nakamura, Y. D. Hoang, J. Banuelos, V. N. Flores, J. Y. Chan, and U. Luderer. 2015. Effects of deletion of the transcription factor Nrf2 and benzo [a]pyrene treatment on ovarian follicles and ovarian surface epithelial cells in mice. Reprod. Toxicol. 58:24–32. doi:10.1016/j.reprotox.2015.07.080.
  • Liu, X., K. Ward, C. Xavier, J. Jann, A. F. Clark, I. H. Pang, and H. Wu. 2016. The novel triterpenoid RTA 408 protects human retinal pigment epithelial cells against H2O2-induced cell injury via NF-E2-related factor 2 (Nrf2) activation. Redox Biol 8:98–109. doi:10.1016/j.redox.2015.12.005.
  • Mach, W. J., A. R. Thimmesch, J. T. Pierce, and J. D. Pierce. 2011. Consequences of hyperoxia and the toxicity of oxygen in the lung. Nurs. Res. Pract. 2011:260482. doi:10.1155/2011/260482.
  • Magara, G., A. C. Elia, K. Syberg, and F. R. Khan. 2018. Single contaminant and combined exposures of polyethylene microplastics and fluoranthene: Accumulation and oxidative stress response in the blue mussel, Mytilus edulis. J. Toxicol. Environ. Health A 81:761–73. doi:10.1080/15287394.2018.1488639.
  • Monteiro, C., J. M. P. Ferreira de Oliveira, F. Pinho, V. Bastos, H. Oliveira, F. Peixoto, and C. Santos. 2018. Biochemical and transcriptional analyses of cadmium-induced mitochondrial dysfunction and oxidative stress in human osteoblasts. J. Toxicol. Environ. Health A 81:705–17. doi:10.1080/15287394.2018.1485122.
  • Muth, C. M., E. S. Shank, and B. Larsen. 2000. Severe diving accidents: Physiopathology, symptoms, therapy. Anaesthesist 49:302–16. doi:10.1007/s001010050832.
  • Nikolić-Kokić, A., N. Tatalović, J. Nestorov, M. Mijović, A. Mijusković, M. Miler, Z. Oreščanin-Dušić, M. Nikolić, V. Milošević, D. Blagojević, et al. 2018. Clozapine, ziprasidone, and sertindole-induced morphological changes in the rat heart and their relationship to antioxidant enzymes function. J. Toxicol. Environ. Health A 81:844–53. doi:10.1080/15287394.2018.1495587.
  • Parrado, C., S. Mercado-Saenz, A. Perez-Davo, Y. Gilaberte, S. Gonzalez, and A. Juarranz. 2019. Environmental stressors on skin aging. Mechanistic insights. Front. Pharmacol. 10:759. doi:10.3389/fphar.2019.00759.
  • Piao, M. S., J. J. Park, J. Y. Choi, D. H. Lee, S. J. Yun, J. B. Lee, and S. C. Lee. 2012. Nrf2-dependent and Nrf2-independent induction of phase 2 detoxifying and antioxidant enzymes during keratinocyte differentiation. Arch. Dermatol. Res. 304:387–95. doi:10.1007/s00403-012-1215-7.
  • Potteti, H. R., N. M. Reddy, T. K. Hei, D. V. Kalvakolanu, and S. P. Reddy. 2013. The NRF2 activation and antioxidative response are not impaired overall during hyperoxia-induced lung epithelial cell death. Oxid. Med. Cell. Longev. 2013:11. doi:10.1155/2013/798401.
  • Raffaeli, G., S. Ghirardello, S. Passera, F. Mosca, and G. Cavallaro. 2018. Oxidative stress and neonatal respiratory extracorporeal membrane oxygenation. Front. Physiol. 9:1739. doi:10.3389/fphys.2018.01739.
  • Rangi, S., S. K. Dhatwalia, P. Bhardwaj, M. Kumar, and D. K. Dhawan. 2018. Evidence of similar protective effects afforded by white tea and its active component ‘EGCG’ on oxidative-stress mediated hepatic dysfunction during benzo(a)pyrene induced toxicity. Food Chem. Toxicol. 116:281–91. doi:10.1016/j.fct.2018.04.044.
  • Rojo de la Vega, M., E. Chapman, and D. D. Zhang. 2018. NRF2 and the hallmarks of cancer. Cancer Cell 34:21–43. doi:10.1016/j.ccell.2018.03.022.
  • Shi, S. H., Z. F. Qi, Y. M. Luo, X. M. Ji, and K. J. Liu. 2016. Normobaric oxygen treatment in acute ischemic stroke: A clinical perspective. Med. Gas Res. 6:147–53. doi:10.4103/2045-9912.191360.
  • Sperlich, B., J. A. Calbet, R. Boushel, and H. C. Holmberg. 2016. Is the use of hyperoxia in sports effective, safe and ethical. Scand. J. Med. Sci. Sport. 26:1268–72. doi:10.1111/sms.12746.
  • Taher, A., Z. Pilehvari, J. Poorolajal, and M. Aghajanloo. 2016. Effects of normobaric hyperoxia in traumatic brain injury: A randomized controlled clinical trial. Trauma Mon. 21:e26772. doi:10.5812/2Ftraumamon.26772.
  • Tetzlaff, K., E. S. Shank, and C. M. Muth. 2003. Evaluation and management of decompression illness–an intensivist’s perspective. Intensive Care Med 29:2128–36. doi:10.1007/s00134-003-1999-1.
  • Wang, H., L. Pan, R. Xu, L. Si, and X. Zhang. 2019. The molecular mechanism of Nrf2-Keap1 signaling pathway in the antioxidant defense response induced by BaP in the scallop Chlamys farreri. Fish Shellfish Immunol. 92:489–99. doi:10.1016/j.fsi.2019.06.006.
  • Wang, J., Z. Yuan, K. Zhang, X. Ding, S. Bai, Q. Zeng, H. Peng, and P. Celi. 2018. Epigallocatechin-3-gallate protected vanadium-induced eggshell depigmentation via P38MAPK-Nrf2/HO-1 signaling pathway in laying hens. Poult. Sci. 97:3109–18. doi:10.3382/ps/pey165.
  • Weaver, J., and K. J. Liu. 2015. Does normobaric hyperoxia increase oxidative stress in acute ischemic stroke? A critical review of the literature. Med. Gas Res. 5:11. doi:10.1186/s13618-015-0032-4.
  • Weinstein, I. B., A. M. Jeffrey, K. W. Jennette, S. H. Blobstein, R. G. Harvey, C. Harris, H. Autrup, H. Kasai, and K. Nakanishi. 1976. Benzo(a)pyrene diol epoxides as intermediates in nucleic acid binding in vitro and in vivo. Science 193:592–95. doi:10.1126/science.959820.
  • Xin, Y., Y. Bai, X. Jiang, S. Zhou, Y. Wang, K. A. Wintergerst, T. Cui, H. Ji, Y. Tan, and L. Cai. 2018. Sulforaphane prevents angiotensin II-induced cardiomyopathy by activation of Nrf2 via stimulating the Akt/GSK-3ß/Fyn pathway. Redox Biol 15:405–17. doi:10.1016/j.redox.2017.12.016.
  • Yu, X. F., J. Wang, N. OUYang, S. Guo, H. Sun, J. Tong, T. Chen, and J. Li. 2019. The role of miR-130a-3p and SPOCK1 in tobacco exposed bronchial epithelial BEAS-2B transformed cells: Comparison to A549 and H1299 lung cancer cell lines. J. Toxicol. Environ. Health A. 82:862–69. doi:10.1080/15287394.2019.1664479.
  • Zhao, X. J., H. W. Yu, Y. Z. Yang, W. Y. Wu, T. Y. Chen, K. K. Jia, L. L. Kang, R. Q. Jiao, and L. D. Kong. 2018. Polydatin prevents fructose-induced liver inflammation and lipid deposition through increasing miR-200a to regulate Keap1/Nrf2 pathway. Redox. Biol. 18:124–37. doi:10.1016/j.redox.2018.07.002.
  • Zitka, O., S. Skalickova, J. Gumulec, M. Masarik, V. Adam, J. Hubalek, L. Trnkova, J. Kruseova, T. Eckschlager, and R. Kizek. 2012. Redox status expressed as GSH:GSSG ratio as a marker for oxidative stress in paediatric tumour patients. Oncol. Lett. 4:1247–53. doi:10.3892/ol.2012.931.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.