204
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Impact of stressors in the aviation environment on xenobiotic dosimetry in humans: physiologically based prediction of the effect of barometric pressure or altitude

ORCID Icon

References

  • American Conference of Governmental Industrial Hygienists (ACGIH): 2018. 2018. TLVs and BEIs. Cincinnati, OH, American Conference of Governmental Industrial Hygienists.
  • Brown, R. P., M. D. Delp, S. L. Lindstedt, L. R. Rhomberg, and R. P. Beliles. 1997. Physiological parameter values for physiologically based pharmacokinetic models. Toxicol. Ind. Health 13 (4):407–84. doi:10.1177/074823379701300401.
  • Butler, W. P., L. W. Steinkraus, E. E. Burlingame, D. E. Smith, B. L. Fouts, J. L. Serres, and D. S. Burch. 2018. Clinical impact of cabin altitude restriction following aeromedical evacuation. Mil. Med. 183 (Suppl suppl_1):193–202. doi:10.1093/milmed/usx171.
  • Cohen Hubal, E. A., B. A. Wetmore, J. F. Wambaugh, H. El-Masri, J. R. Sobus, and T. Bahadori. 2019. Advancing internal exposure and physiologically-based toxicokinetic modeling for 21st-century risk assessments. J. Exposure Sci. Environ. Epidemiol. 29 (1):11–20. doi:10.1038/s41370-018-0046-9.
  • Cymerman, A., and P. B. Rock. 1994. Medical problems in high mountain environments: a handbook for medical officers. USARIEM Technical Note 94-2. US Army Research Institute of Environmental Medicine, Natick, MA, February. Accessed April 19, 2019. https://apps.dtic mil/dtic/tr/fulltext/u2/a278095.pdf.
  • Deveau, M., C. P. Chen, G. Johanson, D. Krewski, A. Maier, K. J. Niven, S. Ripple, P. A. Schulte, J. Silk, J. H. Urbanus, et al. 2015. The global landscape of occupational exposure limits–implementation of harmonization principles to guide limit selection. Version 2. J. Occup. Environ. Hyg. 12 (Suppl 1):S127–S144. doi:10.1080/15459624.2015.1060327.
  • Duran, C., D. Reilly, D. McKenzie-Smith, M. Steele, and D. Ott. 2019. Exploratory studies of chemical contaminants in pilot breathing air and on the flight line at Luke Air Force Base. AFRL-SA-WP-TR-2019-0007. Final report. Air Force Research Laboratory, 711th Human Performance Wing, U.S. Air Force School of Aerospace Medicine, Wright Patterson Air Force Base, OH, March. Accessed January 3, 2020. https://apps.dtic.mil/dtic/tr/fulltext/u2/1070770.pdf.
  • Elliott, J. E., S. S. Laurie, J. P. Kern, K. M. Beasley, R. D. Goodman, B. Kayser, A. W. Subudhi, R. C. Roach, and A. T. Lovering. 2015. AltitudeOmics: Impaired pulmonary gas exchange efficiency and blunted ventilatory acclimatization in humans with patent foramen ovale after 16 days at 5,260 m. J. Appl. Physiol. 118 (9):1100–12. doi:10.1152/japplphysiol.00879.2014.
  • Gasier, H. G., A. R. Reinhold, A. R. Loiselle, S. E. Soutiere, and D. M. Fothergill. 2017. Effects of oral sodium nitrate on forearm blood flow, oxygenation and exercise performance during acute exposure to hypobaric hypoxia (4300 m). Nitric Oxide 69:1–9. doi:10.1016/j.niox.2017.07.001.
  • Gray, G., D. Bron, E. D. Davenport, J. d’Arcy, N. Guettler, O. Manen, T. Syburra, R. Rienks, and E. D. Nicol. 2019. Assessing aeromedical risk: A three-dimensional risk matrix approach. Heart 105 (Suppl1):s9–s16. doi:10.1136/heartjnl-2018-313052.
  • Hissink, A. M., J. Krüse, B. M. Kulig, M. Verwei, H. Muijser, F. Salmon, L. H. Leenheers, D. E. Owen, J. H. Lammers, A. P. Freidig et al. 2007. Model studies for evaluating the neurobehavioral effects of complex hydrocarbon solvents III. PBPK modeling of white spirit constituents as a tool for integrating animal and human test data. Neurotoxicology. 28(4):751–60. doi:10.1016/j.neuro.2007.03.005.
  • Hissink, A. M., B. M. Kulig, J. Kruse, A. P. Freidig, M. Verwei, H. Muijser, J. H. Lammers, R. H. McKee, D. E. Owen, L. M. Sweeney, et al. 2009. Physiologically based pharmacokinetic modeling of cyclohexane as a tool for integrating animal and human test data. Int. J. Toxicol. 28 (6):498–509. doi:10.1177/1091581809348718.
  • Kalson, N. S., F. Hext, A. J. Davies, C. W. Chan, A. D. Wright, and C. H. Imray, and Birmingham Medical Research Expeditionary Society. 2010. Do changes in gastro-intestinal blood flow explain high-altitude anorexia? Eur. J. Clin. Invest.. 40 (8):735–41. doi:10.1111/j.1365-2362.2010.02324.x.
  • Kostrzewski, P., A. Wiaderna-Brycht, and B. Czerski. 1997. Biological monitoring of experimental human exposure to trimethylbenzene. Sci.Total Environ. 199 (1–2):73–81. doi:10.1016/S0048-9697(97)05504-6.
  • Loshbaugh, J. E., J. A. Loeppky, and E. R. Greene. 2006. Effects of acute hypobaric hypoxia on resting and postprandial superior mesenteric artery blood flow. High Altitude Med. Biol. 7 (1):47–53. doi:10.1089/ham.2006.7.47.
  • Mumtaz, M. M., M. Ray, S. R. Crowell, D. Keys, J. Fisher, and P. Ruiz. 2012. Translational research to develop a human PBPK models tool kit-volatile organic compounds (VOCs). J.Toxicol. Environ. Health A 75:6–24. doi:10.1080/15287394.2012.625546.
  • Nicol, E. D., R. Rienks, G. Gray, N. J. Guettler, O. Manen, T. Syburra, J. L. d’Arcy, D. Bron, and E. D. Davenport. 2019. An introduction to aviation cardiology. Heart 105 (Suppl1):s3–s8. doi:10.1136/heartjnl-2018-313019.
  • Richard, N. A., and M. S. Koehle. 2012. Differences in cardio-ventilatory responses to hypobaric and normobaric hypoxia: A review. Aviat, Space, Environ. Med. 83:677–84. doi:10.3357/asem.3182.2012.
  • Sidhu, P., H. T. Peng, B. Cheung, and A. Edginton. 2011. Simulation of differential drug pharmacokinetics under heat and exercise stress using a physiologically based pharmacokinetic modeling approach. Can. J. Physiol. Pharmacol. 89:365–82. doi:10.1139/y11-030.
  • Solbu, K., H. L. Daae, R. Olsen, S. Thorud, D. G. Ellingsen, T. Lindgren, B. Bakke, E. Lundanes, and P. Molander. 2011. Organophosphates in aircraft cabin and cockpit air–method development and measurements of contaminants. J. Environ. Monit. 13:1393–403. doi:10.1039/c0em00763c.
  • Streit, M., C. Gäggelmann, C. Dehnert, J. Burhenne, K.-D. Riedel, E. Menold, G. Mikus, P. Bärtsch, and W. E. Haefeli. 2005. Cytochrome P450 enzyme-mediated drug metabolism at exposure to acute hypoxia (corresponding to an altitude of 4,500�m). Eur. J. Clin. Pharmacol. 61 (1):39–46. doi:10.1007/s00228-004-0886-1.
  • Summerfield, D., D. Raslau, B. Johnson, and L. Steinkraus. 2018. Physiologic challenges to pilots of modern high performance aircraft. In Aircraft technology, ed. M. C. Kushan, 43–73. IntechOpen. doi:10.5772/intechopen.75982.
  • Sweeney, L. M., J. M. Gearhart, D. K. Ott, and H. A. Pangburn. 2020. Considerations for development of exposure limits for chemicals encountered during aircraft operation. Mil. Med. 185 (Supplement1):390–95. doi:10.1093/milmed/usz318.
  • Tan, Y. M., R. R. Worley, J. A. Leonard, and J. W. Fisher. 2018. Challenges associated with applying physiologically based pharmacokinetic modeling for public health decision-making. Toxicol. Sci. 162:341–48. doi:10.1093/toxsci/kfy010.
  • Tardif, R., G. Charest-Tardif, J. Brodeur, and K. Krishnan. 1997. Physiologically based pharmacokinetic modeling of a ternary mixture of alkyl benzenes in rats and humans. Toxicol. Appl. Pharmacol. 144:120–34. doi:10.1006/taap.1996.8096.
  • Tohon, H., M. Valcke, and S. Haddad. 2019. An assessment of the impact of multi-route co-exposures on human variability in toxicokinetics: A case study with binary and quaternary mixtures of volatile drinking water contaminants. J. Appl. Toxicol. 39:974–91. doi:10.1002/jat.3787.
  • US Environmental Protection Agency. 2016. Toxicological review of trimethylbenzenes [CASRNs25551−13−7,95−63−6,526−73−8,and108−67−8]: Supplemental information. US Environmental Protection Agency, Washington, DC. Accessed October 5, 2018. http://ofmpub.epa.gov/eims/eimscomm.getfile?p_download_id=529099.
  • Vinegar, A., G. W. Jepson, and J. H. Overton. 1998. PBPK modeling of short-term (0 to 5 min) human inhalation exposures to halogenated hydrocarbons. Inhal. Toxicol. 10:411–29. doi:10.1080/089583798197600.
  • Wallace, M. A., T. M. Kormos, and J. D. Pleil. 2016. Blood-borne biomarkers and bioindicators for linking exposure to health effects in environmental health science. J. Toxicol. Environ. Health B 19:380–409. doi:10.1080/10937404.2016.1215772.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.