162
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Influence of bifentrin, a pyrethriod pesticide, on human colorectal HCT-116 cells attributed to alterations in oxidative stress involving mitochondrial apoptotic processes

, , , &

References

  • Acehan, D., X. Jiang, D. G. Morgan, J. E. Heuser, X. Wang, and C. W. Akey. 2002. Three-dimensional structure of the apoptosome: Implications for assembly, procaspase-9 binding, and activation. Mol. Cell 9:423–32. doi:10.1016/S1097-2765(02)00442-2.
  • Ben Salem, I., M. Boussabbeh, I. Graiet, A. Rhouma, H. Bacha, and S. Abid Essefi. 2015. Quercetin protects HCT116 cells from Dichlorvos-induced oxidative stress and apoptosis. Cell Stress Chaperones 21:179–86. doi:10.1007/s12192-015-0651-7.
  • Ben Salem, I., A. Prola, M. Boussabbeh, A. Guilbert, H. Bacha, C. Lemaire, and S. Abid-Essefi. 2016. Activation of ER stress and apoptosis by α- and β-zearalenol in HCT116 cells, protective role of quercetin. Neurotoxicology 53:334–42. doi:10.1016/j.neuro.2015.11.004.
  • Bertotto, L. B., R. Bruce, S. Li, J. Richards, R. Sikder, L. Baljkas, M. Giroux, J. Gan, and D. Schlenk. 2019. Effects of bifenthrin on sex differentiation in Japanese medaka (Oryzias latipes). Environ. Res. 177:108564. doi:10.1016/j.envres.2019.108564.
  • Bouaziz, C., and H. Bacha. 2010; Mitochondrial dysfunctions in response to mycotoxins: An overview. Chapter XX. Mitochondria: Structure, Functions and Dysfunctions. ISBN 978-1-61668-346-7. Hauppauge, New York: Nova Science Publishers, Inc., 811–28.
  • Brander, S. M., K. M. Jeffries, B. J. Cole, B. M. De Courten, J. W. White, S. Hasenbein, N. A. Fangue, and R. E. Connon. 2016. Transcriptomic changes underlie altered egg protein production and reduced fecundity in an estuarine model fish exposed to bifenthrin. Aquat. Toxicol. 174:247–60. doi:10.1016/j.aquatox.2016.02.014.
  • Cao, Z., Y. Cui, H. M. Nguyen, D. P. Jenkins, H. Wulff, and I. N. Pessah. 2014. Nanomolar bifenthrin alters synchronous Ca2+ oscillations and cortical neuron development independent of sodium channel activity. Mol. Pharmacol. 854:630–39. doi:10.1124/mol.113.090076.
  • Casida, J. E., and K. A. Durkin. 2013. Neuroactive insecticides: Targets, selectivity, resistance, and secondary effects. Annu. Rev. Entomol. 58:99–117. doi:10.1146/annurev-ento-120811-153645.
  • Casida, J. E., and G. B. Quistad. 1998. Golden age of insecticide research: Past, present, or future? Annu. Rev. Entomol. 43:1–16. doi:10.1146/annurev.ento.43.1.1.
  • Chen, T., and G. Chen. 2007. Identification and quantitation of pyrethroid pesticide residues in vegetables by solid-phase extraction and liquid chromatography/electrospray ionization ion trap mass spectrometry. Rapid Commun. Mass Spectrom. 21:1848–54. doi:10.1002/rcm.3027.
  • Collins, A. R. 2014. Measuring oxidative damage to DNA and its repair with the comet assay. Biochim. Biophys. Acta 1840:794–800. doi:10.1016/j.bbagen.2013.04.022.
  • Dar, M. A., A. M. Khan, R. Raina, P. K. Verma, and N. M. Wani. 2019. Effect of bifenthrin on oxidative stress parameters in the liver, kidneys and lungs of rats. Environ. Sci. Pollut. Res. Int. 26:9365–70. doi:10.1007/s11356-019-04362-4.
  • English, J. M., and M. H. Cobb. 2002. Pharmacological inhibitors of MAPK pathways. Trends Pharmacol. Sci. 23:40–45. doi:10.1016/S0165-6147(00)01865-4.
  • EPA, U. S. Report on the 2013 U.S. Environmental Protection Agency (EPA) International Decontamination Research and Development Conference. Research Triangle Park, NC: November 05-07 2013. U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-14/210 2014.
  • Forsgren, K. L., N. Riar, and D. Schlenk. 2013. The effects of the pyrethroid insecticide, bifenthrin, on steroid hormone levels and gonadal development of steel head Oncorhynchus mykiss) under hypersaline conditions. Gen. Comp. Endocr. 186:101–07. doi:10.1016/j.ygcen.2013.02.047.
  • Frank, D. F., G. W. Miller, D. J. Harvey, S. M. Brander, J. Geist, R. E. Connon, and P. J. Lein. 2017. Bifenthrin causes transcriptomic alterations in mTOR and ryanodine receptor dependent signalling and delayed hyperactivity in developing zebrafish (Danio rerio). Aquat.Toxicol. 200:50–61. doi:10.1016/j.aquatox.2018.04.003.
  • Gammon, D. W., Z. Liu, A. Chandrasekaran, S. F. El-Naggar, Y. A. Kuryshev, and S. Jackson. 2019. Pyrethroid neurotoxicity studies with bifenthrin indicate a mixed Type I/II mode of action. Pest. Manage. Sci. 75:1190–97.
  • Guo, Y., O. Shen, J. Han, H. Duan, S. Yang, Z. Zhu, J. Tong, and J. Zhang. 2017. Circadian rhythm genes mediate fenvalerate-induced inhibition of testosterone synthesis in mouse Leydig cells. J. Toxicol. Environ. Health Part A 80:1314–20. doi:10.1080/15287394.2017.1384148.
  • Han, J., C. Ji, Y. Guo, R. Yan, T. Hong, Y. Dou, Y. An, S. Tao, F. Qin, J. Nie, et al. 2017. Mechanisms underlying melatonin-mediated prevention of fenvalerate-induced behavioral and oxidative toxicity in zebrafish. J. Toxicol. Environ. Health Part A 80:1331–41. doi:10.1080/15287394.2017.1384167.
  • Hintzen, E. P., M. J. Lydy, and J. B. Belden. 2009. Occurrence and potential toxicity of pyrethroids and other insecticides in bed sediments of urban streams in central Texas. Environ. Pollut. 157:110–16. doi:10.1016/j.envpol.2008.07.023.
  • Hoffman, N., V. Tran, A. Daniyan, O. Ojugbele, S. C. Pryor, J. A. Bonventre, K. Flynn, and B. S. Weeks. 2006. Bifenthrin activates homotypic aggregation in human T-cell lines. Med. Sci. Monit. 12:BR87–BR94.
  • Hong, T., R. Li, L. L. Sun, J. Xu, M. T. He, W. Wang, R. Yan, J. Tong, and J. Zhang. 2019. Role of the gene Phlda1 in fenvalerate-induced apoptosis and testicular damage in Sprague-Dawley rats. J. Toxicol. Environ. Health Part A 80:870–78. doi:10.1080/15287394.2019.1664584.
  • Jin, Y., X. Pan, and Z. Fu. 2014. Exposure to bifenthrin causes immunotoxicity and oxidative stress in male mice. Environ. Toxicol. 29:991–99. doi:10.1002/tox.21829.
  • Jin, Y., J. Wang, X. Pan, L. Wang, and Z. Fu. 2013. Cis-Bifenthrin enantioselectively induces hepatic oxidative stress in mice. Pes.t Biochem. Physiol. 107:61–67. doi:10.1016/j.pestbp.2013.05.006.
  • Johnson, G. L., and R. Lapadat. 2002. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298:1911–12. doi:10.1126/science.1072682.
  • Katsuda, Y. 1999. Development of and future prospects for pyrethroid chemistry. Pest. Sci. 55:775–82. doi:10.1002/(SICI)1096-9063(199908)55:8<775::AID-PS27>3.0.CO;2-N.
  • Li, W., L. Tai, J. Liu, Z. Gai, and G. Ding. 2014. Monitoring of pesticide residues levels in fresh vegetable form Heibei Province, North China. Environ. Monit. Assess 186:6341–49. doi:10.1007/s10661-014-3858-7.
  • Liu, H., and J. Li. 2015. Enantioselective apoptosis induced by individual isomers of bifenthrin in Hep G2 cells. Environ. Toxicol. Pharmacol. 39:810–14. doi:10.1016/j.etap.2015.02.010.
  • Liu, J., Y. Yang, S. Zhuang, Y. Yang, F. Li, and W. Liu. 2011. Enantioselective endocrine-disrupting effects of bifenthrin on hormone synthesis in rat ovarian cells. Toxicology 290:42–49. doi:10.1016/j.tox.2011.08.016.
  • Marković, M., S. Cupać, R. Durović, J. Milinović, and P. Kljajić. 2010. Assessment of heavy metal and pesticide levels in soil and plant products from agricultural area of Belgrade, Serbia. Arch. Environ. Contam. Toxicol. 58:341–51. doi:10.1007/s00244-009-9359-y.
  • Marnett, L. J. 1999. Lipid peroxidation-DNA damage by malondialdehyde. Mutat. Res. 424:83–95. doi:10.1016/S0027-5107(99)00010-X.
  • Mattia, C. J., C. P. LeBel, and S. C. Bondy. 1991. Effects of toluene and its metabolites on cerebral reactive oxygen species generation. Biochem. Pharmacol. 42:879–82. doi:10.1016/0006-2952(91)90048-A.
  • Mosmann, T. 1983. Rapid colorimetric assay for cellular growth and survival. Application to proliferation and cytotoxicity assays. J. Immunol. Meth. 65:55–63. doi:10.1016/0022-1759(83)90303-4.
  • Ohkawa, H., N. Ohishi, and K. Yagi. 1979. Assay for lipid peroxide in animal tissues by 621 thiobarbituric acid reaction. Anal. Biochem. 95:351–58. doi:10.1016/0003-2697(79)90738-3.
  • Park, S., J. Y. Lee, H. Park, G. Song, and W. Lim. 2020. Bifenthrin induces developmental immunotoxicity and vascular malformation during zebrafish embryogenesis. Comp. Biochem. Physiol C. Toxicol. Pharmacol. 228:108671. doi:10.1016/j.cbpc.2019.108671.
  • Rogan, W. J., and A. Chen. 2005. Health risks and benefits of bis(4-chlorophenyl)-1,1,1-trichloroethane (DDT). Lancet 366:763–73. doi:10.1016/S0140-6736(05)67182-6.
  • Sadowska-Woda, I., D. Popowicz, and A. Karowicz-Bilińska. 2010. Bifenthrin-induced oxidative stress in human erythrocytes in vitro and protective effect of selected flavonols. Toxicol. In. Vitro. 24:460–64. doi:10.1016/j.tiv.2009.09.024.
  • Schleier, J. J., and R. K. D. Peterson. 2011. Pyrethrins and pyrethroid insecticides. In RSC Green Chemistry No. 11 Green Trends in Insect Control, ed. L. O. Oscar and J. G. Fernández-Bolaños, 94–131. Cambridge, United Kingdom: Royal Society of Chemistry.
  • Soderlund, D. M. 2012. Molecular mechanisms of pyrethroid insecticide neurotoxicity: Recent advances. Arch. Toxicol. 86:165–81. doi:10.1007/s00204-011-0726-x.
  • Soderlund, D. M., and J. R. Bloomquist. 1989. Neurotoxic actions of pyrethroid insecticides. Annu. Rev. Entomol. 34:77–96. doi:10.1146/annurev.en.34.010189.000453.
  • Sudakin, D. L. 2006. Pyrethroid insecticides: Advances and challenges in biomonitoring. Clin. Toxicol. 44:31–37. doi:10.1080/15563650500394647.
  • Tournier, C., P. Hess, D. D. Yang, J. Xu, T. K. Turner, A. Nimnual, D. Bar-Sagi, S. N. Jones, R. A. Flavell, and R. J. Davis. 2000. Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 288:870–74. doi:10.1126/science.288.5467.870.
  • Weston, D. P., and M. J. Lydy. 2010. Urban and agricultural sources of pyrethroid insecticides to the Sacramento-San Joaquin Delta of California. Environ. Sci. Technol. 44:1833–40. doi:10.1021/es9035573.
  • Weston, D. P., J. You, and M. J. Lydy. 2004. Distribution and toxicity of sediment-associated pesticides in agriculture-dominated water bodies of California’s Central Valley. Environ. Sci. Technol. 38:2752–59. doi:10.1021/es0352193.
  • White, J. W., B. J. Cole, G. N. Cherr, R. E. Connon, and S. M. Brander. 2017. Scaling up endocrine disruption effects from individuals to populations: Outcomes depend on how many males a population needs. Environ.Sci.Technol. 51:1802–10. doi:10.1021/acs.est.6b05276.
  • Wolansky, M. J., and R. Tornero-Velez. 2013. Critical consideration of the multiplicity of experimental and organismic determinants of pyrethroid neurotoxicity: A proof of concept. J. Toxicol. Environ. Health B 16:453–90. doi:10.1080/10937404.2013.853607.
  • Ye, X., F. Li, J. Zhang, H. Ma, D. Ji, X. Huang, T. E. Curry Jr., W. Liu, and J. Liu. 2017. Pyrethroid insecticide cypermethrin accelerates pubertal onset in male mice via disrupting hypothalamic-pituitary-gonadal axis. Environ. Sci. Technol. 5:10212–21. doi:10.1021/acs.est.7b02739.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.